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Goal

* Navigation : determine paths to
go from one point to an other.
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GPS:
SORRY, RETURN TO
THE MAIN ROAD




Summary

* Classical approaches
* GNG
* SGNG
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A simple environment (obstacles are in dark grey)
represented by a mesh. The avatar can navigate in the
zone defined by the mesh (in grey) because it knows
there are no obstacles in this zone. Different algorithms
can be used to find optimal paths.

* requires an algorithm to find the optimal path between
two points
* a path which may not be natural or believable
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A simple environment (obstacles are in grey)
represented by a graph. Nodes are represented
by circles and edges by black lines. An avatar
can move from one node to another only if the
nodes are connected by an edge. Usually, an A*
is used to find the path between two nodes.
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Video games

* These bots need to have a waypoint file for each map, or a pathnode
system embedded in the map.
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Quake 3 Arena bots

* use an area awareness system file to move around the map

Waypoint
system
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Quake 3 Arena bots

* use an area awareness system file to move around the map
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Quake 3 Arena bots

* use an area awareness system file to move around the map

buche@enib.fr



Counter-Strike bots

e use a waypoint file
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Unreal Tournament's series bots

* use a pathnode system embedded in the map to navigate
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Valve bots

To support the many community-created maps, some games include an
automatic mesh generation system

The first time users attempt to \olay a custom map with bots, the generation
system will build a navigation file for that map. Starting at a player spawn point,
walkable space is sampled by “flood-filling” outwards from that spot, searching
for adjacent walkable points.

Finally, dynamic bots are able to dynamically learn levels and maps as they play.
RealBot, for Counter-Strike, is an example of this. However, this learning is not
guided by human behavior.

Navigation points obtained will therefore not produce believable behavior. The
paths the bots use to go from one point in the environment to another do not
resemble those human players would take. This problem comes not from the
decision-making process itself, but from the representation of the environment it
uses. Indeed, the bots use navigation points in the environment which may not
accurately or naturally represent how players use the same environment.
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Summary

* Classical approaches
* GNG
* SGNG
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GNG

* Error = how well the node represents its surroundings
* The fewer errors a node has, the better it represents its surroundings
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GNG

while Number of nodes < N, do
Get input position (4 (a))
Pick the closest (n;) and the second closest nodes (n;) (4 (b))
Create edge between n; and ns (4 (c)).
If an edge already existed, reset its age to 0.
Increase the error of ny (4 (d))
Move n; and its neighbors toward the input (4 (e))
Increase the age of all the edges emanating from n; by 1 (4 (f))
Delete edges exceeding a certain age (4 (g))
if [teration number is a multiple of 1 then
Find the maximum error node 7,
Find the maximum error node n,,,,2 among the neighbor of n,,,, (4 (h))
Insert node between na. and npmaze (4 (i)
Decrease the error of n,,.: and Nz
end if
Decrease each node’s error by a small amount (4 (j))
end while
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GNG

* Fails to handle temporal series
* Grow up over the time
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Summary

* Classical approaches
* GNG
* SGNG
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nodes « {}
edges + {}
while teacher plays do
(x,v.z) < teacher’s position
if [nodes| = 0 or 1 then
nodes < nodes U {(x,y,z,error=0)}
end if
if |[nodes| = 2 then
edges « {(nodes,age=0)}
end if
ny + closest((x,v,z).nodes)
ns + secondClosest((x,v.z),nodes)
edge + edges U {{n,,n2},age=0)}

ny.error+=||(x,v,z)-ny||

Attract ny toward (x,v,z)

¥ edge € edgesFrom(n,), edge.age -
Delete edges older than Age

Attract neighbors(n;) toward (x,v,z)
¥ node € nodes, node.error-=Err

if ny.error > Err then
maxErrNei < maxErrorNeighbour(n;)
newNode « between(n,.maxErrNei)
ny.error;/ =2
maxErrNei.error/=2
newError < nj.error + maxErrNei.error
nodes - nodes U {(newNode,newError)}

end if

end while
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https://www.youtube.com/watch?v=HSKkr4CQYr8
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Senstivity
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SGNG iteration 1 SGNG iteration 2

GNG iteration 1 GNG iteration 2

SGNG iteration 5

-

GNG iteration 5
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SGNG iteration 10

SGNG iteration 8

GNG iteration 8 GNG iteration 10
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