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Model : KNN

Examples

. predict how I’m going to vote in the next presidential election.
If you know nothing else about me, one approach is to look at
how my neighbors are planning to vote. Living in Seattle, my
neighbors are planning to vote for the Democratic candidate,
which suggests that “Democratic candidate” is a good guess
for me as well.

. you know more about me : my age, my income, how many
kids I have ... To the extent my behavior is influenced by
those things, looking just at my neighbors who are close to
me among all those dimensions seems likely to be an even
better predictor than looking at all my neighbors. This is the
idea behind nearest neighbors classification.
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Requirements

. Some notion of distance

. An assumption that points that are close to one another are
similar

the prediction for each new point depends only on the handful of
points closest to it.
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. classify some new data point : find the k nearest labeled
points and let them vote on the new output.

. need a function that counts votes : Reduce k until we find a
unique winner.

def majority_vote(labels):

"""assumes that labels are ordered from nearest to farthest"""

vote_counts = Counter(labels)

winner , winner_count = vote_counts.most_common (1)[0]

num_winners = len([ count for count in vote_counts.values () if count ==

winner_count ])

if num_winners == 1:

return winner # unique winner , so return it

else:

return majority_vote(labels [: -1]) # try again without the farthest
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def knn_classify(k, labeled_points , new_point):

"""each labeled point should be a pair (point , label)"""

# order the labeled points from nearest to farthest

by_distance = sorted(labeled_points , key=lambda (point , _): distance(point ,

new_point))

# find the labels for the k closest

k_nearest_labels = [label for _, label in by_distance [:k]]

# and let them vote

return majority_vote(k_nearest_labels)
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Example : Favorite Programming Languages

# each entry is ([longitude , latitude], favorite_language)

cities = [([ -122.3 , 47.53] , "Python"), # Seattle

([ -96.85, 32.85] , "Java"), # Austin

([ -89.33, 43.13] , "R"), # Madison

# ... and so on

]
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Plotting the data

# key is language , value is pair (longitudes , latitudes)

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

# we want each language to have a different marker and color

markers = { "Java" : "o", "Python" : "s", "R" : "^" }

colors = { "Java" : "r", "Python" : "b", "R" : "g" }

for (longitude , latitude), language in cities:

plots[language ][0]. append(longitude)

plots[language ][1]. append(latitude)

# create a scatter series for each language

for language , (x, y) in plots.iteritems ():

plt.scatter(x, y, color=colors[language], marker=markers[language],

label=language , zorder =10)

plot_state_borders(plt) # pretend we have a function that does this

plt.legend(loc=0) # let matplotlib choose the location

plt.axis ([ -130,-60,20 ,55]) # set the axes

plt.title("Favorite Programming Languages")

plt.show()
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Example : Favorite Programming Languages

Try several different values for k

for k in [1, 3, 5, 7]:

num_correct = 0

for city in cities:

location , actual_language = city

other_cities = [other_city

for other_city in cities

if other_city != city]

predicted_language = knn_classify(k, other_cities , location)

if predicted_language == actual_language:

num_correct += 1

print k, "neighbor[s]:", num_correct , "correct out of", len(cities)
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Example : Favorite Programming Languages

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

k = 1 # or 3, or 5, or ...

for longitude in range (-130, -60):

for latitude in range (20, 55):

predicted_language = knn_classify(k, cities , [longitude , latitude ])

plots[predicted_language ][0]. append(longitude)

plots[predicted_language ][1]. append(latitude)
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Unsupervised learning

Learning mode

. supervised learning : set of labeled data for making predictions
about new, unlabeled data.

. unsupervised learning : no label at all

. Whenever you look at some source of data, the data will
somehow form clusters.
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Idea

Examples

. A data set showing where millionaires live probably has
clusters in places like Beverly Hills and Manhattan.

. A data set showing how many hours people work each week
probably has a cluster around 40.

. A data set of demographics of registered voters likely forms a
variety of clusters (e.g., ”soccer moms”, ”bored retirees” ...)

the clusters won’t label themselves. You’ll have to do that by
looking at the data underlying each one.
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Model : k-means

1 Start with a set of k-means, which are points in d-dimensional
space.

2 Assign each point to the mean to which it is closest.

3 If no point’s assignment has changed, stop and keep the
clusters.

4 If some point’s assignment has changed, recompute the means
and return to step 2.
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Model : k-means

def vector_mean(vectors):

"compute the vector whose ith element is the mean of the ith elements of the 

input vectors"

n = len(vectors)

return scalar_multiply (1/n, vector_sum(vectors))

class KMeans:

"""performs k-means clustering"""

def __init__(self , k):

self.k = k # number of clusters

self.means = None # means of clusters

def classify(self , input):

"""return the index of the cluster closest to the input"""

return min(range(self.k),

key=lambda i: squared_distance(input , self.means[i]))
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Model : k-means

def train(self , inputs):

# choose k random points as the initial means

self.means = random.sample(inputs , self.k)

assignments = None

while True:

# Find new assignments

new_assignments = map(self.classify , inputs)

# If no assignments have changed , we’re done.

  if assignments == new_assignments:

    return

  # Otherwise keep the new assignments ,

  assignments = new_assignments

  # And compute new means based on the new assignments

  for i in range(self.k):

    # find all the points assigned to cluster i

    i_points = [p for p, a in zip(inputs , assignments) if a == i]

    # make sure i_points is not empty so don’t divide by 0

if i_points:

self.means[i] = vector_mean(i_points)
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Example : stickers

Context

. sticker printer can print at most five colors per sticker.

. there’s some way to take a design and modify it so that it
only contains five colors ?

Data

. images can be represented as two-dimensional array of pixels,
where each pixel is itself a three-dimensional vector (red,
green, blue) indicating its color.

. five-color version of the image
1 Choosing five colors
2 Assigning one of those colors to each pixel
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Example : stickers

path_to_png_file = r"C:\ images\image.png"

import matplotlib.image as mpimg

img = mpimg.imread(path_to_png_file)

top_row = img[0]

top_left_pixel = top_row [0]

red , green , blue = top_left_pixel

pixels = [pixel for row in img for pixel in row]

clusterer = KMeans (5)

clusterer.train(pixels)

def recolor(pixel):

cluster = clusterer.classify(pixel)

return clusterer.means[cluster]

new_img = [[ recolor(pixel) for pixel in row]

for row in img]

plt.imshow(new_img)

plt.axis(’off’)

plt.show()
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Alternative approach

“grow” clusters from the bottom up

1 Make each input its own cluster of one.

2 As long as there are multiple clusters remaining, find the two
closest clusters and merge them.

3 At the end, we’ll have one giant cluster containing all the
inputs. If we keep track of the merge order, we can recreate
any number of clusters by unmerging. For example, if we want
three clusters, we can just undo the last two merges.
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Distance

Name Egg-laying Scales Poisonous Cold-blooded Legs nb Reptile

Cobra True True True True 0 Yes
Rattlesnake True True True True 0 Yes
Boa False False False True 0 Yes
Chicken True False False False 2 No
Alligator True False False True 4 Yes
Frog True True True True 4 No
Salmon True False False True 0 No
Python True False False True 0 Yes

Features = four binary and one integer
Boa = (0,1,0,1,0)
Frog =(1,0,1,1,4)
Distance to separate ?
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Distance : Euclidean

rattlesnake boa frog

rattlesnake 1.4 4.2
boa 1.4 4.4
frog 4.2 4.4
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Training vs Testing

def split_data(data , prob):

results = [], []

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x, y, test_pct):

data = zip(x, y) # pair corresponding values

train , test = split_data(data , 1 - test_pct) # split the data set of pairs

x_train , y_train = zip(*train) # magical un-zip trick

x_test , y_test = zip(*test)

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split(xs , ys , 0.33)

model.train(x_train , y_train)

performance = model.test(x_test , y_test)
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SICK 1000 200

HEALTHY 800 8000

Precision = 1000/ (1000+800) =55,7%
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Precision = True Positives/ (True Positives + False Positives)
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SPAM 100 170

NON SPAM 30 700
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Recall = True Positives/ (True Positives + False Negatives)
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return tp / (tp + fn)
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� Recall : 37%

� Precision : 55,7%
� Recall : 83.3%
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F1 Score

F1 Score = (2 x Precision x Recall) / (Precision + Recall)

� Precision : 76,9%
� Recall : 37%
� Average : 56,9%
� F1 Score = 50%

� Precision : 55,7%
� Recall : 83.3%
� Average : 69,5%
� F1 Score = (2x55,7x83.3) / (55,7+83,3) = 66%
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F1 Score

def f1_score(tp, fp, fn, tn):

p = precision(tp, fp, fn, tn)

r = recall(tp, fp, fn , tn)

return 2 * p * r / (p + r)
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the more data you have, the harder it is to over- fit.
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Features

As we mentioned, when your data doesn’t have enough features,
your model is likely to underfit. And when your data has too many
features, it’s easy to overfit. But what are features and where do
they come from ?
Features are whatever inputs we provide to our model.
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Type of features

Type of features we have constrains the type of models we can
use :

. The Naive Bayes classifier is suited to yes-or-no features

. Regression models require numeric features

. Decision trees can deal with numeric or categorical data.
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Example : robot detection

Can we detect robot using low quality images ?
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HOG+SVM

. Application : Persons detector

. HOG : Histograms of Oriented Gradients

. The intent of a feature descriptor is to generalize the object in
such a way that the same object (in this case a person)
produces as close as possible to the same feature descriptor
when viewed under different conditions. This makes the
classification task easier.

. The creators of this approach trained a Support Vector
Machine (a type of machine learning algorithm for
classification), or “SVM”, to recognize HOG descriptors of
people.
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HOG+SVM

HOG : entire person is represented by a single feature vector
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HOG+SVM

The HOG person detector uses a sliding detection window which is
moved around the image.
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HOG+SVM

. At each position of the detector window, a HOG descriptor is
computed for the detection window.

. This descriptor is then shown to the trained SVM, which
classifies it as either “person” or “not a person”.

. To recognize persons at different scales, the image is
subsampled to multiple sizes. Each of these subsampled
images is searched
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HOG+SVM

Within a cell, we compute the gradient vector at each pixel
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To sum up

. Define problem (data)

. List tools (algorithms)

. Evaluate tools to find the best one

� Accuracy
� Precision
� Recall
� F1
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