

Page 2 :

D Featur

1 Classification

• KNN

2 Clustering

- k-means
- Hierarchical clustering
- Distance

3 Tests

- Training vs Testing
- K-Fold Cross Validation
- Model performance

4 Feature extraction

Classification Clustering Tests KN

1 Classification

• KNN

2 Clustering

- k-means
- Hierarchical clustering
- Distance

3 Tests

- Training vs Testing
- K-Fold Cross Validation
- Model performance

4 Feature extraction

C. BUCHE - buche@enib.fr IML

Classification

Clustering

3 / 126

Model : KNN

Examples

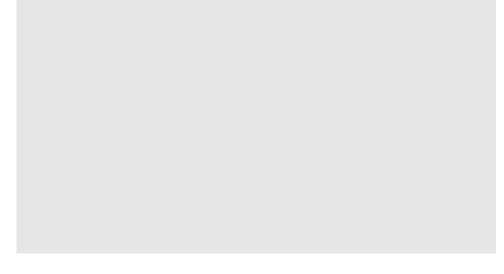
predict how I'm going to vote in the next presidential election. If you know nothing else about me, one approach is to look at how my neighbors are planning to vote. Living in Seattle, my neighbors are planning to vote for the Democratic candidate, which suggests that "Democratic candidate" is a good guess for me as well.

KNN

you know more about me : my age, my income, how many kids I have ... To the extent my behavior is influenced by those things, looking just at my neighbors who are close to me among all those dimensions seems likely to be an even better predictor than looking at all my neighbors. This is the idea behind *nearest neighbors classification*.

08-30	IML Classification
2018-	

Page 3 :



Page 4 :

IML Classification KNN Hodel KNN Hodel KNN

 Dependent

 Share extended of distance
 Share extended on the point that are close to one another are similar

 Interpret of the point close of the shareful of points closes to at.

Page 5 :

Requirements

- ▷ Some notion of distance
- An assumption that points that are close to one another are similar

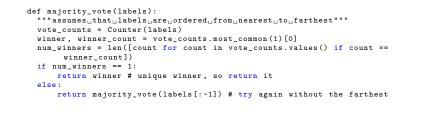
the prediction for each new point depends only on the handful of points closest to it.

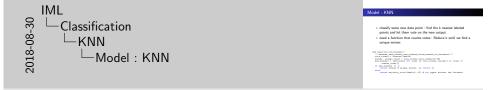
Classification		
Clustering		
	KNN	
Tests		

C. BUCHE - buche@enib.fr IML

Model : KNN

- classify some new data point : find the k nearest labeled points and let them vote on the new output.
- ▷ need a function that counts votes : Reduce k until we find a unique winner.

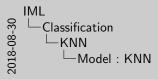




Page 6 :

5 / 126

	Classification Clustering Tests Feature extraction	KNN
Model : KNN		



af provide the second sec

Model : KNN

Page 7 :

- def knn_classify(k, labeled_points, new_point):
 """each_labeled_point_should_be_a_pair_(point,_label)"""
- # find the labels for the k closest
 k_nearest_labels = [label for _, label in by_distance[:k]]
- # and let them vote
 return majority_vote(k_nearest_labels)

C. BUCHE - buche@enib.fr IM

7 / 126

Page 8 :

KNN

Example : Favorite Programming Languages

Plotting the data

key is language, value is pair (longitudes, latitudes)
plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

we want each language to have a different marker and color markers = { "Java" : "o", "Python" : "s", "R" : "o" } colors = { "Java" : "r", "Python" : "b", "R" : "g" }

for (longitude, latitude), language in cities:
 plots[language][0].append(longitude)
 plots[language][1].append(latitude)

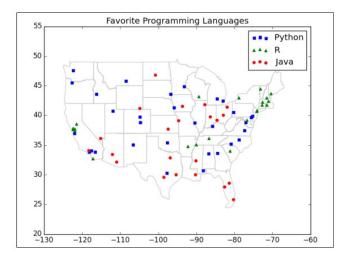
plot_state_borders(plt) # pretend we have a function that does this

plt.legend(loc=0) # let matplotlib choose the location
plt.axis([-130,-60,20,55]) # set the axes

 $\verb+plt.title("Favorite_Programming_Languages")+ plt.show()$

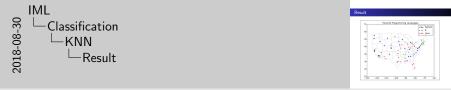
C. BUCHE - buche@enib.fr

9 / 126



 IML
 Classification
 Classification

Page 9 :



Page 10 :

Classification [∟]knn ,..., is siny) profitend_language = lan_slamify(b, sch if profitend_language == actual_language sam_surrent to 1 Example : Favorite Programming Languages

Page 11 :

1 neighbor[s] : 40 correct out of 75 3 neighbor[s] : 44 correct out of 75 5 neighbor[s] : 41 correct out of 75 7

neighbor[s] : 35 correct out of 75

C. BUCHE - buche@enib.fr

for other_city in cities if other_city != city] predicted_language = knn_classify(k, other_cities, location)

if predicted_language == actual_language:

num_correct += 1

11 / 126

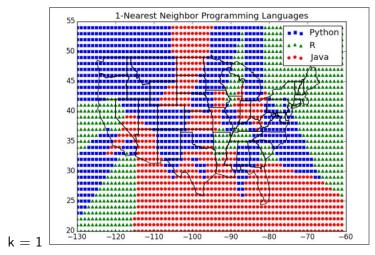
print k, "neighbor[s]:", num_correct, "correct_out_of", len(cities)

Page 12 :

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }

k = 1 # or 3, or 5, or ...

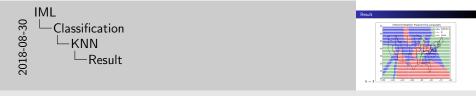
for longitude in range(-130, -60): for latitude in range(20, 55): predicted_language = knn_classify(k, cities, [longitude, latitude]) plots[predicted_language][0].append(longitude) plots[predicted_language][1].append(latitude)



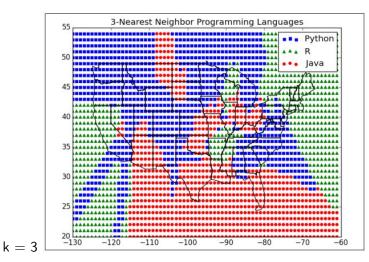
C. BUCHE - buche@enib.fr

IML Classification KNN Result

Page 13 :



Page 14 :



13 / 126

Clustering Tests extraction Clustering Tests Distance

1 Classification

• KNN

2 Clustering

- k-means
- Hierarchical clustering
- Distance

3 Tests

- Training vs Testing
- K-Fold Cross Validation
- Model performance

4 Feature extraction

C. BUCHE - buche@enib.fr IML

15 / 126

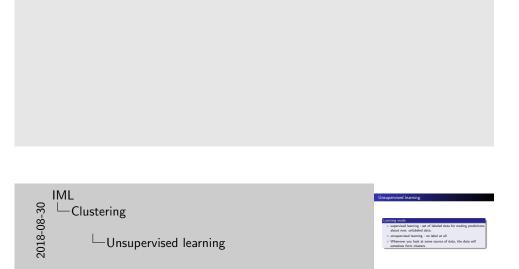
Clustering Tests Feature extraction

Learning mode

- supervised learning : set of labeled data for making predictions about new, unlabeled data.
- ▷ unsupervised learning : no label at all
- Whenever you look at some source of data, the data will somehow form *clusters*.

IML Clustering

Page 15 :



Page 16 :

Idea

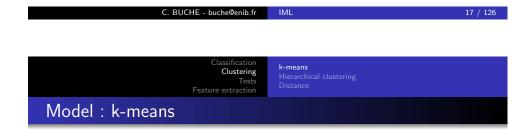
Examples

A data set showing where millionaires live probably has clusters in places like Beverly Hills and Manhattan.

Clustering Tests

- A data set showing how many hours people work each week probably has a cluster around 40.
- A data set of demographics of registered voters likely forms a variety of clusters (e.g., "soccer moms", "bored retirees" ...)

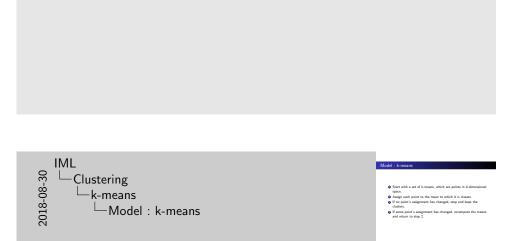
the clusters won't label themselves. You'll have to do that by looking at the data underlying each one.



- Start with a set of k-means, which are points in d-dimensional space.
- 2 Assign each point to the mean to which it is closest.
- If no point's assignment has changed, stop and keep the clusters.
- If some point's assignment has changed, recompute the means and return to step 2.

8-30	IML └─Clustering
2018-0	└—Idea

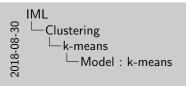
Page 17 :



Page 18 :

Clustering Tests Distance

Model : k-means



Page 19 :

class KMeans:
 """performs_k-means_clustering"""

def classify(self, input):
"""return_the_index_of_the_cluster_closest_to_the_input"""
return min(range(self.k),
 key=lambda i: squared_distance(input, self.means[i]))

C. BUCHE - buche@enib.fr

19 / 126

Classification Clustering Tests Feature extraction Model : k-means Hierarchical clustering Distance

def train(self, inputs):
 # choose k random points as the initial means
 self.means = random.sample(inputs, self.k)
 assignments = None

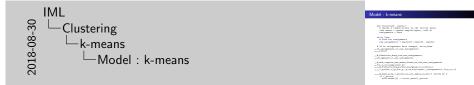
while True: # Find new assignments new_assignments = map(self.classify, inputs)

If no assignments have changed, we're_done.
uuif_assignmentsu==unew_assignments:
uuuuureturn

uu#uOtherwiseukeeputheunewuassignments, uuassignmentsu=unew_assignments

uu#uAnducomputeunevumeansubaseduonutheunevuassignments uuforuiuinurange(self.k): uuuu#ufinduallutheupointsuassignedutouclusterui uuuufupointsu=u[puforup,uauinuzip(inputs,uassignments)uifuau==ui]

uuuu#umakeusureui_pointsuisunotuemptyusoudon't divide by 0
 if i_points:
 self.means[i] = vector_mean(i_points)



Page 20 :

k-means

Example : stickers

Context

- ▷ sticker printer can print at most five colors per sticker.
- ▷ there's some way to take a design and modify it so that it only contains five colors?

Data

- ▷ images can be represented as two-dimensional array of pixels, where each pixel is itself a three-dimensional vector (red, green, blue) indicating its color.
- ▷ five-color version of the image
 - **1** Choosing five colors
 - Assigning one of those colors to each pixel

C. BUCHE - buche@enib.fr

21 / 126

Example : stickers

path_to_png_file = r"C:\images\image.png" import matplotlib.image as mpimg img = mpimg.imread(path_to_png_file)

 $top_row = img[0]$ top_left_pixel = top_row[0] red, green, blue = top_left_pixel

pixels = [pixel for row in img for pixel in row]

clusterer = KMeans(5) clusterer.train(pixels)

def recolor(pixel): cluster = clusterer.classify(pixel) return clusterer.means[cluster]

new_img = [[recolor(pixel) for pixel in row] for row in img]

plt.imshow(new_img) plt.axis('off') plt.show()

	IML	
2018-08-30	Clustering 	

stickers

Page 21 :



Page 22

IML └─Clustering Hierarchical clustering

Alternative approach

Page 23 :

"grow" clusters from the bottom up

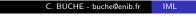
Alternative approach

Make each input its own cluster of one.

Clustering

Tests Feature extraction

- As long as there are multiple clusters remaining, find the two closest clusters and merge them.
- 3 At the end, we'll have one giant cluster containing all the inputs. If we keep track of the merge order, we can recreate any number of clusters by unmerging. For example, if we want three clusters, we can just undo the last two merges.



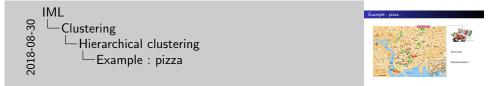
23 / 126

Clustering Hierarchical clustering Example : pizza

		S	22	
S		Ser al	S.	
S.		R		500
a	0	1	1	203

Pizza chain

Optimal location ?



Page 24 :

Example : pizza

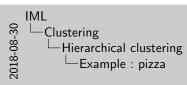
Pizza chain

Optimal location ?

C. BUCHE - buche@enib.fr IML

k-means Hierarchical clustering Distance Clustering Tests Feature extraction Example : pizza

How to teach the PC to do that ?



Page 25 :

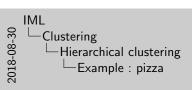
Page 26 :

25 / 126

Example : pizza

C. BUCHE - buche@enib.fr IML

27 / 126



Page 27 :



Page 28 :

Example : pizza

C. BUCHE - buche@enib.fr IML

29 / 126

IML Productoring Hierarchical clustering Hierarchical clustering Example : pizza

Page 29 :

Page 30 :

Distance

Name	Egg-laying	Scales	Poisonous	Cold-blooded	Legs nb	Reptile
Cobra	True	True	True	True	0	Yes
Rattlesnake	True	True	True	True	0	Yes
Boa	False	False	False	True	0	Yes
Chicken	True	False	False	False	2	No
Alligator	True	False	False	True	4	Yes
Frog	True	True	True	True	4	No
Salmon	True	False	False	True	0	No
Python	True	False	False	True	0	Yes

Features = four binary and one integer Boa = (0,1,0,1,0)Frog =(1,0,1,1,4)Distance to separate ?

C. BUCHE - buche@enib.fr IML

31 / 126

	rattlesnake	boa	frog
rattlesnake		1.4	4.2
boa	1.4		4.4
frog	4.2	4.4	

IML Clustering Distance Distance

Page 31 :

Page 32 :

Distance : Euclidean

	rattlesnake	boa	frog	Alligator
rattlesnake		1.4	4.2	4.1
boa	1.4		4.4	4.1
frog	4.2	4.4		1.7
Alligator	4.1	4.1	1.7	

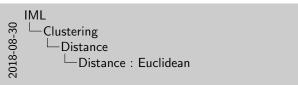
Alligator is closer to a frog than a snake

C BUCHE hushedenik

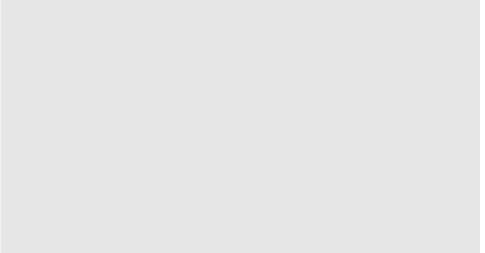
C. BUCHE - Duche@enib.fr	IIVIL	33 / 120
Classification Clustering Tests Feature extraction	k-means Hierarchical clustering Distance	
Distance : Euclidean		

	rattlesnake	boa	frog	Alligator
rattlesnake		1.4	1.7	1.4
boa	1.4		2.2	1.4
frog	1.7	2.2		1.7
Alligator	1.4	1.4	1.7	

Using binary Feature : Alligator is closer to a snake than a frog Feature Engineering Matters



Page 33 :



Page 34 :

ication	Training vs Testing
stering	
Tests	K-Fold Cross Valid
	Model performance
raction	

Clas

1 Classification

• KNN

2 Clustering

- k-means
- Hierarchical clustering
- Distance

3 Tests

- Training vs Testing
- K-Fold Cross Validation
- Model performance

4 Feature extraction

C. BUCHE - buche@enib.fr IML

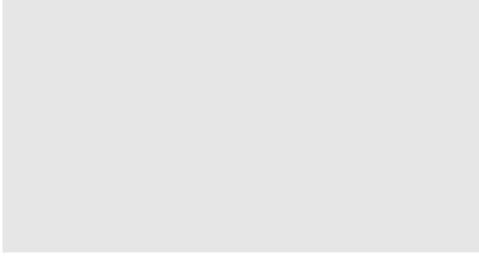
35 / 126

▷ How well is my model doing?

▶ How do I improve it?

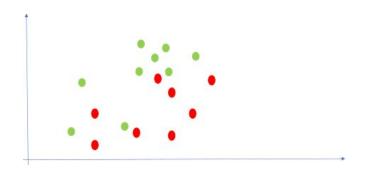
IML ^{CE} ^W ^W ^W ^W ^W ^W ^W ^W
--

Page 35 :

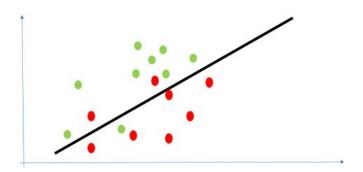


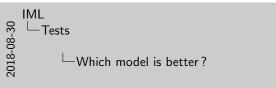
Page 36 :

Which model is better?

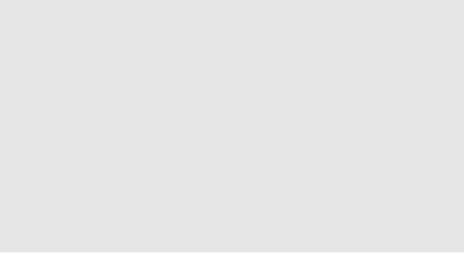


C. BUCHE - buche@enib.fr	IML	37 / 126





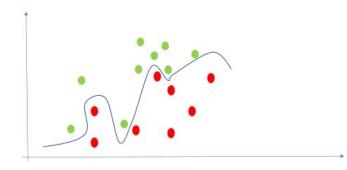
Page 37 :



Page 38 :

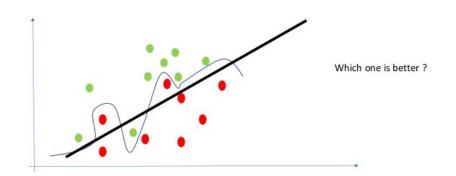
Which model is better?

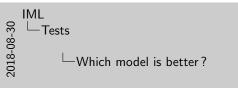
1



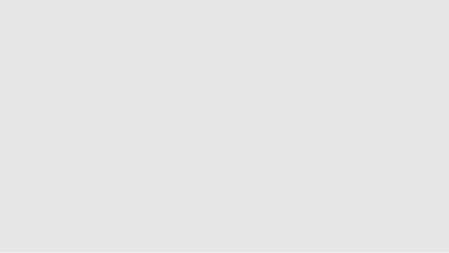
C. BUCHE - buche@enib.fr	IML	39 / 126

Clustering Tests Feature extraction Which model is better?



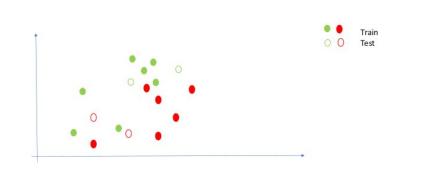


Page 39 :

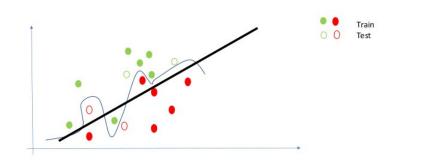


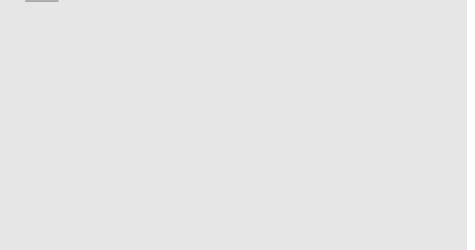
Page 40 :

Training vs Testing



C. BUCHE - buche@enib.fr	IML	41 / 126





raining vs Testing

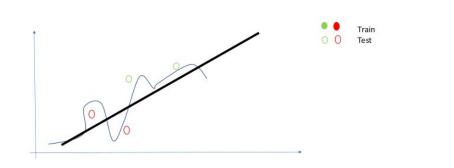
0 0 0 0 0 Tex



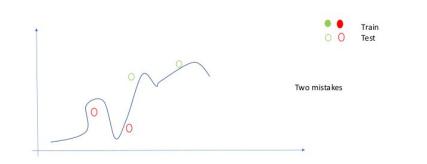
Page 42 :

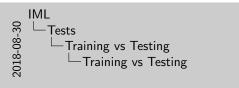
Training vs Testing

1



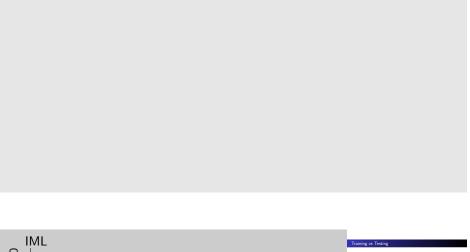
C. BUCHE - buche@enib.fr	IML	43 / 126





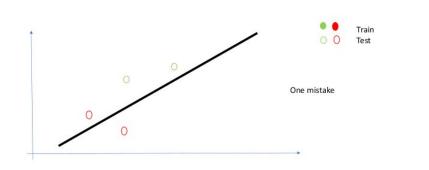
aining vs Testing

Page 43 :

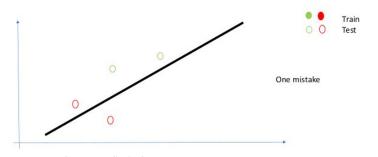


Page 44 :

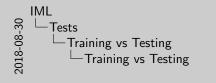
Training vs Testing



C. BUCHE - buche@enib.fr	IML	45 / 126



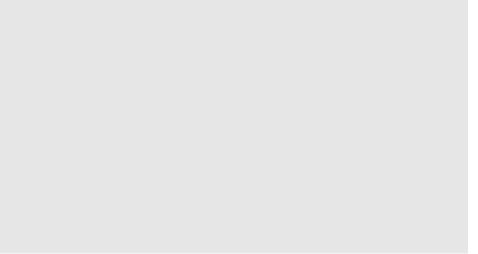
Better generalization !



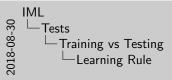
0 Orenow

raining vs Testing

Page 45 :



Page 46 :



NEVER use your testing data for training
 OCO
 Desire

ning Rule

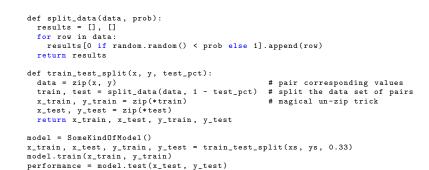
Page 47 :

▷ NEVER use your testing data for training

	000
Training	Testing

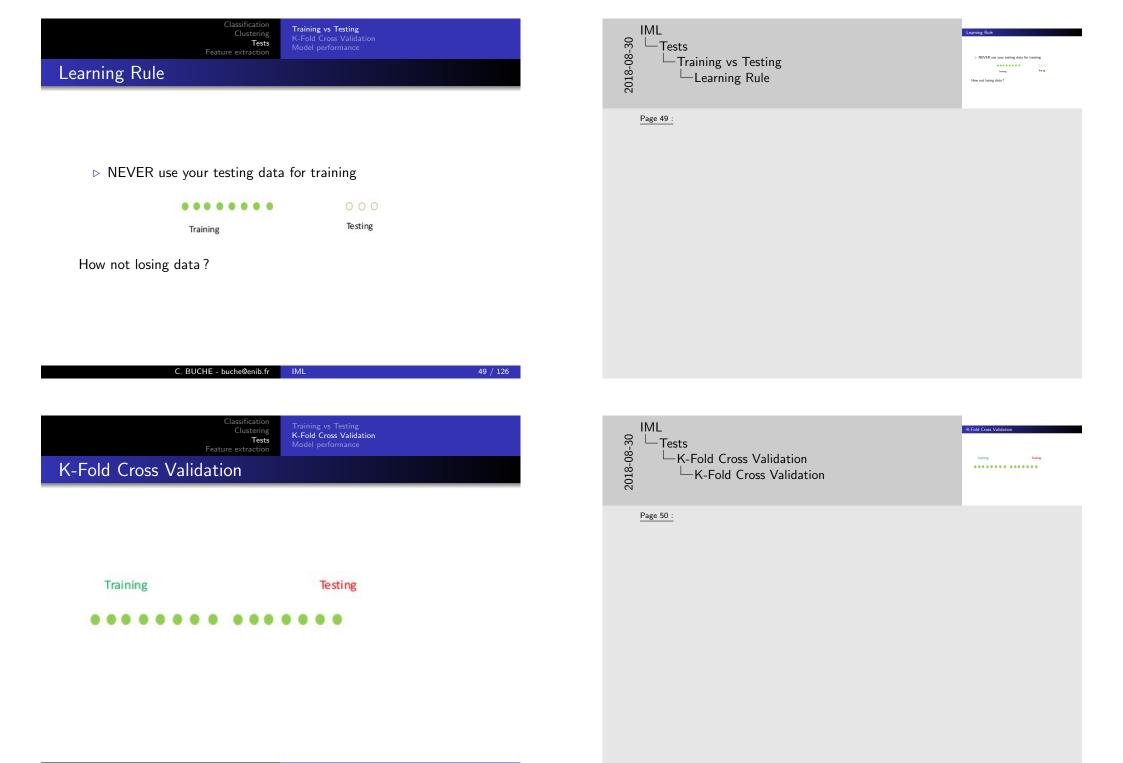
C. BUCHE - buche@enib.fr	IML

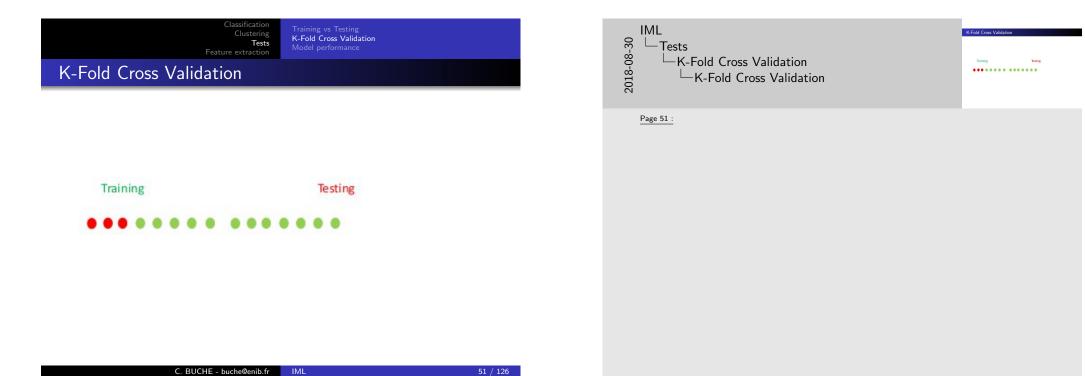
Classification Clustering Tests Feature extraction Training vs Testing K-Fold Cross Validation Model performance



Page 48 :

47 / 126



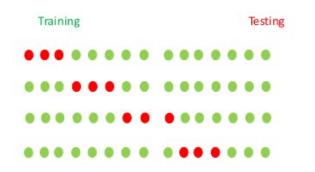


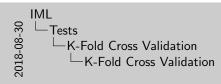
Classification Clustering Tests Feature extraction	Training vs Testing K-Fold Cross Validation Model performance
K-Fold Cross Validation	

Page 52 :

K-Fold Cross Validation

C. BUCHE - buche@enib.fr	IML	53 / 126



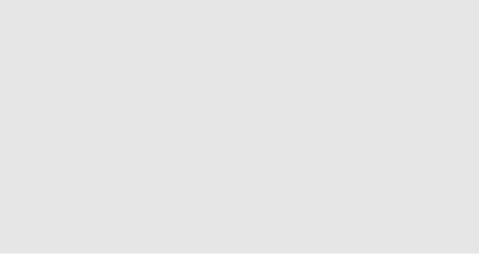


Training *******

K-Fold Cross Valie

Testing

Page 53 :

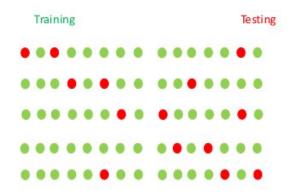


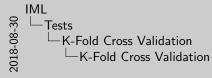
Page 54 :

K-Fold Cross Validation

	Tra	ini	ng										Te	esting
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	•	•	•	•	•	•	•	•	•	•		•	•	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•											•	•

55 / 126



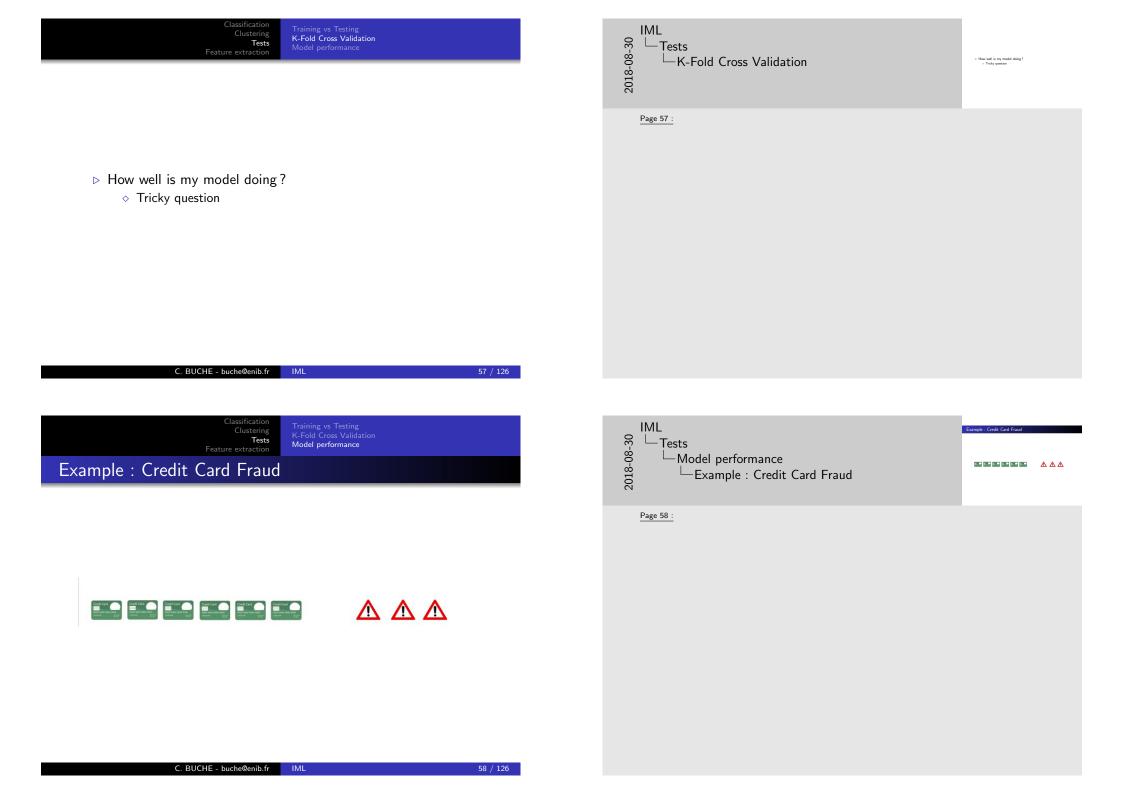


ation alidation

K-Fold Cross Valida

Page 55 :

Page 56 :



1 1

Model : All transactions are good

1

 \bigwedge

 $\bigwedge \bigwedge$

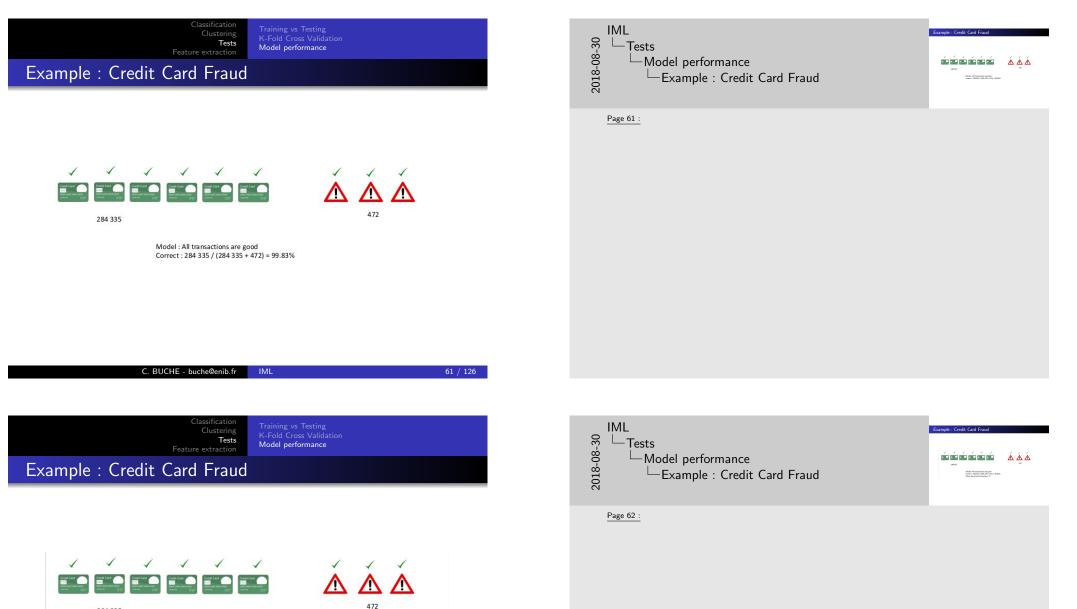
472

1

1

284 335

1



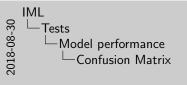
284 335

Model : All transactions are good Correct : 284 335 / (284 335 + 472) = 99.83% What about bad transactions ??

62 / 126

Ŷ

C. BUCHE - buche@enib.fr IML



Page 65 :

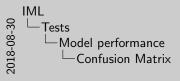
	Diagnosed SICK	Diagnosed HEALTHY
SICK	True Positive 🀓	False Negative
HEALTHY	False Positive	True Positive
	Faise Fositive a	True Fositive 🏼

C. BUCHE - buche@enib.fr	IML	65 / 126
Classification Clustering Tests Feature extraction	Training vs Testing K-Fold Cross Validation Model performance	
Confusion Matrix		

	Diagnosed SICK	Diagnosed HEALTHY
SICK	True Positive	False Negative
HEALTHY	False Positive	True Positive

Page 66 :

Confusion Matrix



formance ion Matrix

Page 67 :

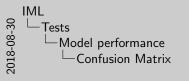
	Diagnosed SICK	Diagnosed HEALTHY
SICK	1000	200
HEALTHY	800	8000

C. BUCHE - buche@enib.fr	INIL

67 / 126

Page 68 :

C. BUCHE - buche@enib.fr IML



SPAM True Positive State Negative

nfusion Matrix

Page 69 :

	Diagnosed SPAM	Diagnosed NON SPAM
SPAM	True Positive	False Negative
NON SPAM	False Positive	True Positive

C. BU	CHE - buche@enib.fr	IML	69 / 126
	Classification		
	Clustering	Training vs Testing K-Fold Cross Validation	
	Tests	Model performance	
	Feature extraction	Model performance	

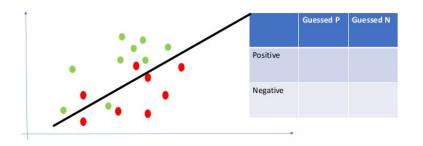
Confusion Matrix

IML └─ Tests 2018-08-30 Model performance Confusion Matrix

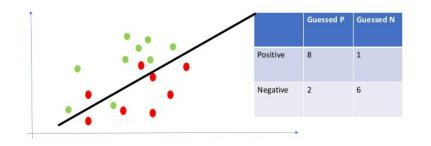
Page 70 :

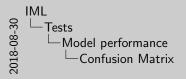
	Diagnosed SPAM	Diagnosed NON SPAM
SPAM	100	170
NON SPAM	30	700

Confusion Matrix

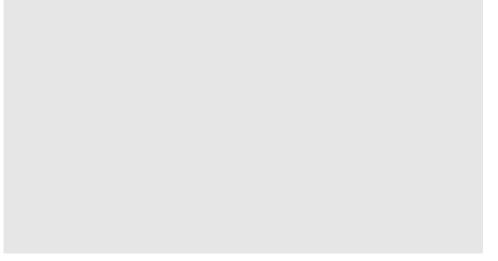


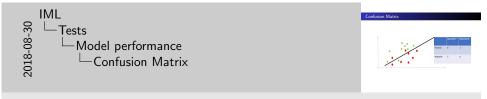
C. BUCHE - buche@enib.fr	IML	71 / 126



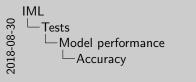


Page 71 :





Page 72 :



Accuracy How many 64 we claudy connectly? Descent Connect SCK Diagnost HEALTHY HEALTHY BID 600

Page 73 :

How many did we classify correctly?

	Diagnosed SICK	Diagnosed HEALTHY
SICK	1000	200
HEALTHY	800	8000

	Classification Clustering Tests Feature extraction	Training vs Testing K-Fold Cross Validation Model performance	
Accuracy			

C. BUCHE - buche@enib.fr IML

 IML
 Accuracy

 Model performance
 Import MAXIMUM

 Accuracy
 Accuracy

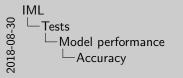
Page 74 :

How many did we classify correctly?

	Diagnosed SICK	Diagnosed HEALTHY
SICK	1000	200
HEALTHY	800	8000

Accuracy = (1000+8000)/10000 = 90%

73 / 126



How many did w	e classify correctly?	
	Diamosed SPAM	Diagnosed NON SPAN
SPAM	100	170
NON SPAM		700

Page 75 :

How many did we classify correctly?

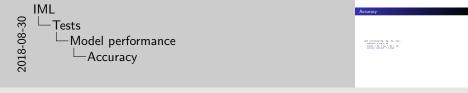
Accuracy

	Diagnosed SPAM	Diagnosed NON SPAM
SPAM	100	170
NON SPAM	30	700

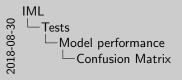
Accuracy = 80%Accuracy = Correctly classified / all

C. BUCHE - buche@enib.fr	IML 75 / 126
Classification Clustering Tests Feature extraction	Training vs Testing K-Fold Cross Validation Model performance
Accuracy	

def accuracy(tp, fp, fn, tn): correct = tp + tn total = tp + fp + fn + tn return correct / total



Page 76 :



Disposed SCN Disposed HEALTHY SICK Poler Repairse X HEALTHY False Plateine 2

Page 77 :

	Diagnosed SICK	Diagnosed HEALTHY
SICK		False Negative
HEALTHY	False Positive	

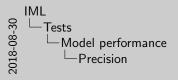
C. BUCHE - buche@enib.fr	IML	77 / 126

Classification Clustering Tests Feature extraction Confusion Matrix

	Diagnosed SICK	Diagnosed HEALTHY
SICK		False Negative
	3	
HEALTHY	False Positive 🕤	



Page 78 :



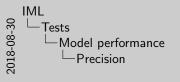
Page 79 :

	Diagnosed SPA	۹M	Diagnosed NON SPAM
SPAM			False Negative
		X	
NON SPAM	False Positive		

C. BUCHE - buche@enib.fr	IML

79 / 126

Page 80 :



Precision
How many did we classify correctly ? $\frac{1}{15(X+100)} \frac{1000}{200} \frac{1000}{1000} \frac{1000}{1$

Page 81 :

How many did we classify correctly?

	Diagnosed SICK	Diagnosed HEALTHY
SICK	1000	200
HEALTHY	800	8000

Precision = 1000/ (1000 + 800) = 55,7%

C. BUCHE	E - buche@enib.fr	IML	81 / 126
	Classification	Training vs Testing	
	Clustering	K-Fold Cross Validation	
F	Tests eature extraction	Model performance	
Precision			
I TECISION			

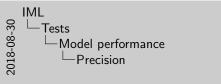
1 age

How many did we classify correctly?

	Diagnosed SPAM	Diagnosed NON SPAM
SPAM	100	170
NON SPAM	30	700

Precision= 76.8%

Precision = True Positives/ (True Positives + False Positives)



daf presiding(sp. dp. da. sa)rates sp./ (sp. dp)

Page 83 :

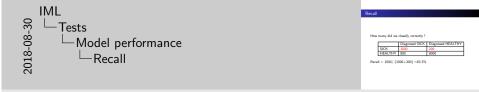
def precision(tp, fp, fn, tn): return tp / (tp + fp)

C. BUCHE - buche@enib.fr	IML	83 / 126

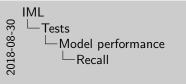
How many did we classify correctly?

	Diagnosed SICK	Diagnosed HEALTHY
SICK	1000	200
HEALTHY	800	8000

 $\mathsf{Recall} = 1000 / \text{ (}1000 {+} 200\text{)} = 83.3\%$



Page 84 :



	e classify correctly?	
	1.00.000	Diagnosed NON SPAM
SPAM	100	170
NON SPAM		700

Page 85 :

How many did we classify correctly?

	Diagnosed SPAM	Diagnosed NON SPAM
SPAM	100	170
NON SPAM	30	700

Recall = 37%

Recall

Recall = True Positives / (True Positives + False Negatives)

 IML
 Pecal

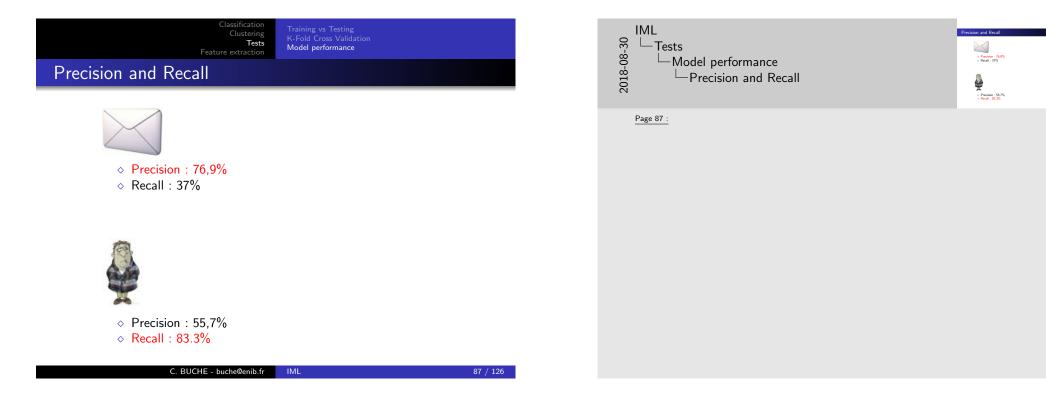
 Model performance
 Model performance

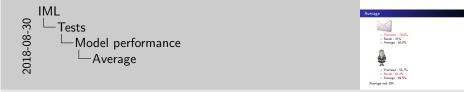
 Recall
 Recall

Page 86 :

def recall(tp, fp, fn, tn):
 return tp / (tp + fn)

C. BUCHE - buche@enib.fr IML





Page 88 :

- ♦ Precision : 76,9% ♦ Recall : 37%
- ◊ Average : 56,9%

Average

- ♦ Precision : 55,7%
- ◆ Recall : 83.3%
- ◊ Average : 69,5%

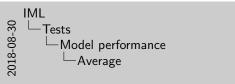
Average not OK

lassification

Feature extraction

Tests

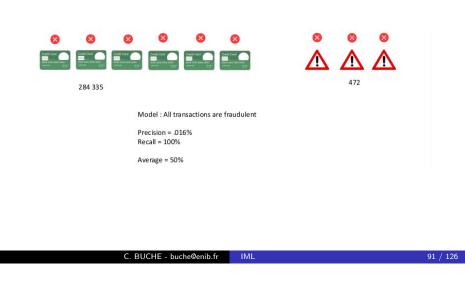
Training vs Testing K-Fold Cross Validation Model performance



<u>Page 89 :</u>



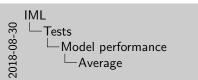
Page 90 :



F1 Score = (2 x Precision x Recall) / (Precision + Recall)

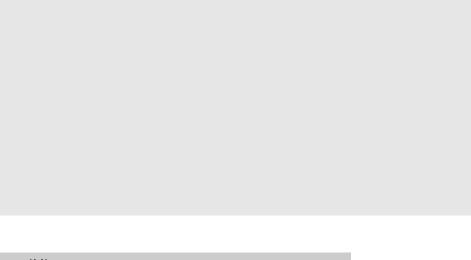
- ♦ Precision : 76,9%
- ◊ Recall : 37%
- ◊ Average : 56,9%
- \diamond F1 Score = 50%

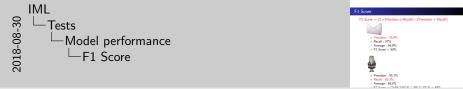
- ♦ Precision : 55,7%
- ◆ Recall : 83.3%



Wodel: All the socie Processor - JCMs Result - Wills Auropy - SOS

Page 91 :





Page 92 :



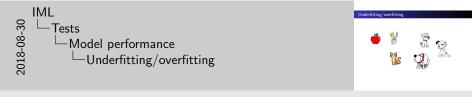
F1 Score

Page 93 :

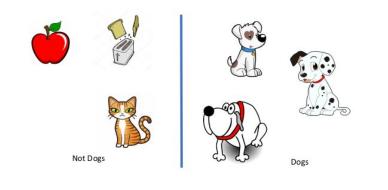
def f1_score(tp, fp, fn, tn): p = precision(tp, fp, fn, tn) r = recall(tp, fp, fn, tn) return 2 * p * r / (p + r)

C. BUCHE - buche@enib.fr	IML

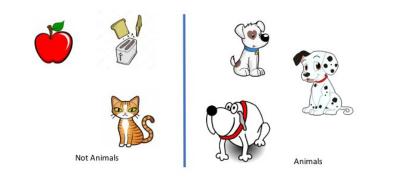
93 / 126

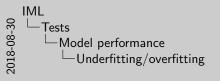


Page 94 :

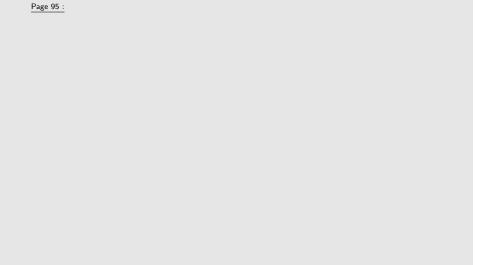


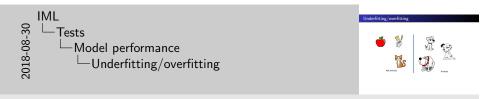
95 / 126



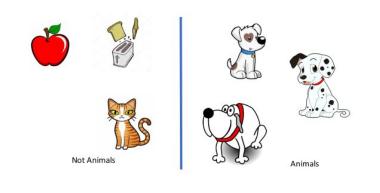


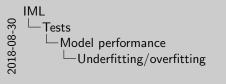
--- OF .

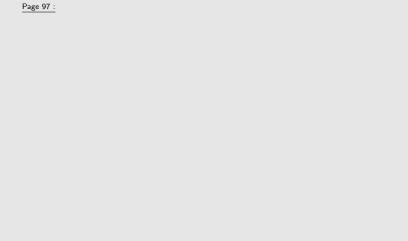




Page 96 :







NE DOME

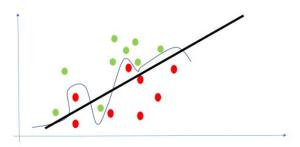


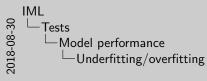
Page 98 :

97 / 126

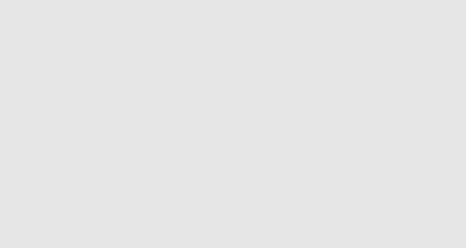


Underfitting/overfitting





Page 99



٢ **T**s

Page 100 :

Training vs Testing K-Fold Cross Validation Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML

101 / 126

Underfitting/overfitting

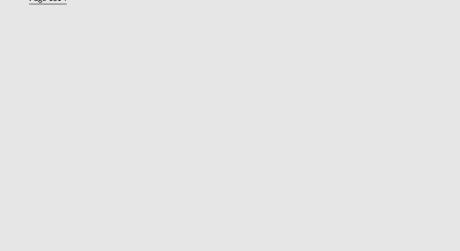
Training set : Bad Great

Good

Underfitting : Not Animals Overfitting : Not White Dogs OK : Not Dogs

Underfitting : Animals Overfitting : White Dogs OK : Dogs IML [™] Tests [™] Model performance [™] Underfitting/overfitting

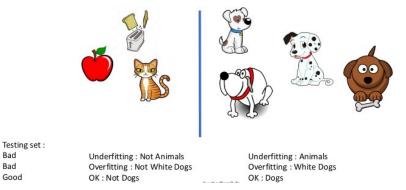
Page 101 :



Underfilling / Not Asimals Underfilling / Asimals Overfilling / Not Asimals Overfilling / White Dags OV: Not Topp OV: Not Topp

Page 102 :

102 / 126



the more data you have, the harder it is to over- fit.

C. BUCHE - buche@enib.fr

103 / 126

1 Classification

• KNN

Bad

Bad

Good

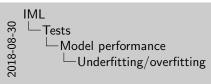
2 Clustering

- k-means
- Hierarchical clustering
- Distance

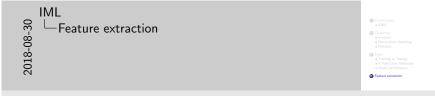
3

- Training vs Testing
- K-Fold Cross Validation
- Model performance

4 Feature extraction



Page 103 :



Page 104 :

Clustering Tests Feature extraction

Features

As we mentioned, when your data doesn't have enough features, your model is likely to underfit. And when your data has too many features, it's easy to overfit, but what are features and where do they come from ? Features are whatever inputs we provide to our model.

Page 105 :

As we mentioned, when your data doesn't have enough features, your model is likely to underfit. And when your data has too many features, it's easy to overfit. But what are features and where do they come from ?

Features are whatever inputs we provide to our model.

Tests Feature extraction

C. BUCHE - buche@enib.fr

Type of features

Type of features we have constrains the type of models we can use :

- ▷ The Naive Bayes classifier is suited to yes-or-no features
- ▷ Regression models require numeric features
- ▷ Decision trees can deal with numeric or categorical data.

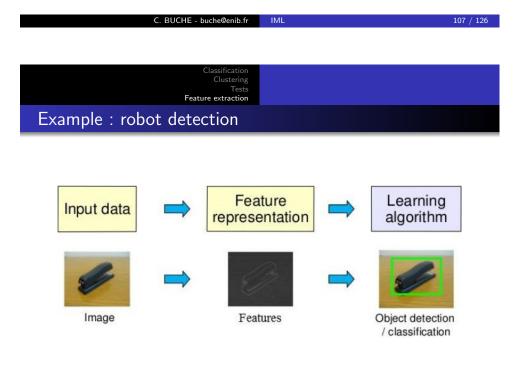
Page 106 :

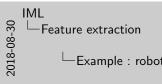
105 / 126

lassification Feature extraction

Example : robot detection

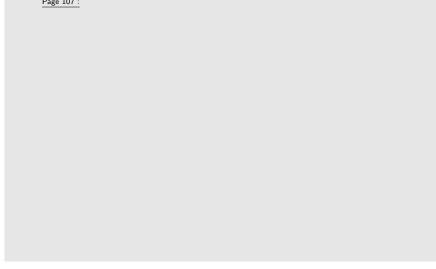
Can we detect robot using low quality images?

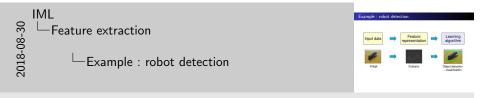




Example : robot detection

Page 107 :





Page 108 :

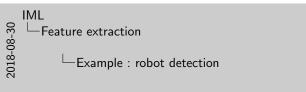
Classification Clustering Tests Feature extraction

Example : robot detection

(a) Training			
label			

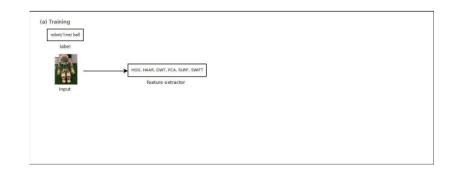
C. BUCHE - buche@enib.fr	IML	109 / 126

(a) Training			
label			
and a			
Input			

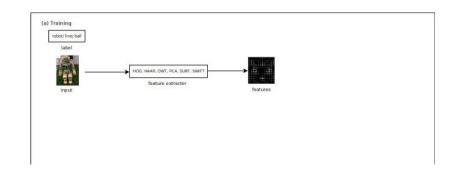


xample : robot de

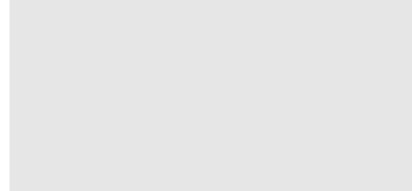
Page 109 :

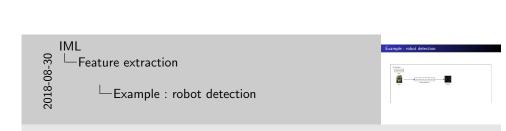


C. BUCHE - buche@enib.fr	IML	111 / 126

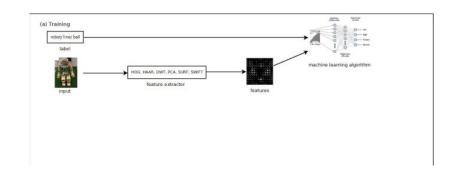


Page 111 :

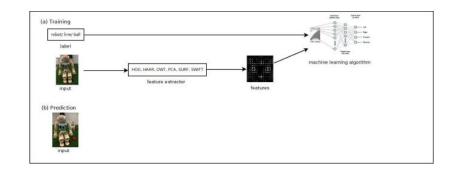


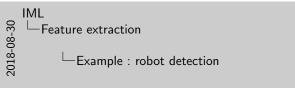


Page 112 :



C. BUCHE - buche@enib.fr	IML	113 / 126

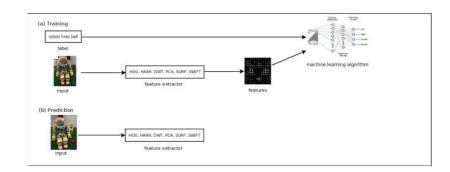




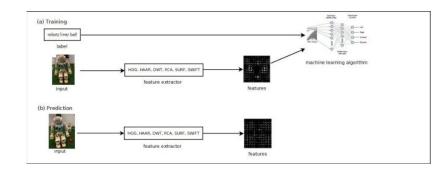
Page 113 :

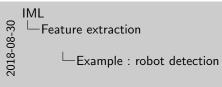


Page 114 :



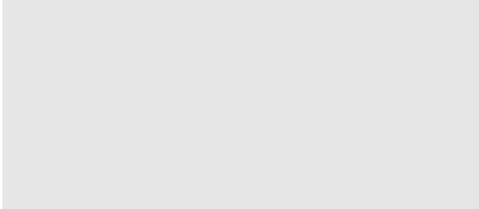
C. BUCHE - buche@enib.fr	IML 1	15 / 126



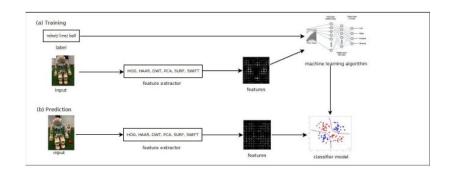


-a jie ÷. No. and Col. NO. ON ANT -R Paleta at an and the first sector of the sector of the

Page 115 :



Page 116 :



C. BUCHE - buche@enib.fr IML

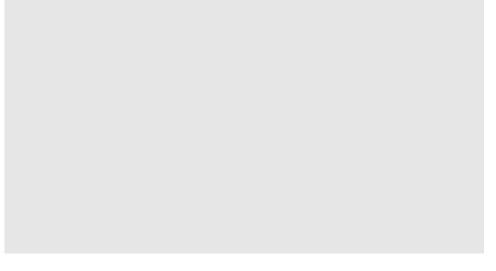
117 / 126

- ▷ Application : Persons detector
- ▷ HOG : Histograms of Oriented Gradients
- ▷ The intent of a feature descriptor is to generalize the object in such a way that the same object (in this case a person) produces as close as possible to the same feature descriptor when viewed under different conditions. This makes the classification task easier.
- ▷ The creators of this approach trained a Support Vector Machine (a type of machine learning algorithm for classification), or "SVM", to recognize HOG descriptors of people.

IML 2018-08-30 Feature extraction

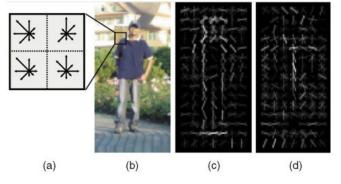
Example : robot detection

Page 117 :



Page 118 :

 $\ensuremath{\mathsf{HOG}}$: entire person is represented by a single feature vector

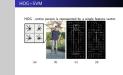


C. BUCHE - buche@enib.fr IML

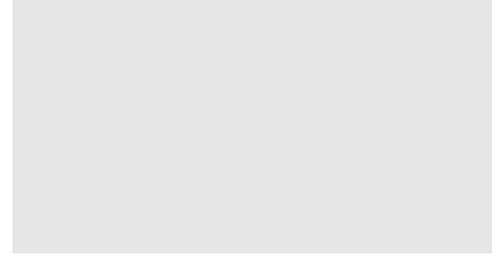
119 / 126

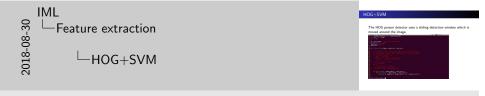
The HOG person detector uses a sliding detection window which is moved around the image.

RFeature extraction



Page 119 :





Page 120 :

Classification Clustering Tests Feature extraction

HOG+SVM

IML [∞] ⁸⁸ ⁸⁸ ⁸⁰

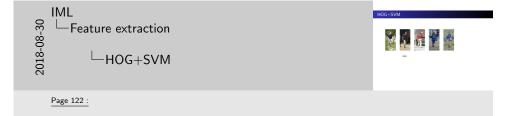
At each position of the detector window, a HOC descriptor is computed for the detection window. This descriptor is then shown to the trained SVM, which classifies it as either "person" or "not a person". To recognize pancinas at different scalas, the image is subsampled to multiple stars. Each of these subsampled

Page 121 :

- At each position of the detector window, a HOG descriptor is computed for the detection window.
- ▷ This descriptor is then shown to the trained SVM, which classifies it as either "person" or "not a person".
- To recognize persons at different scales, the image is subsampled to multiple sizes. Each of these subsampled images is searched

121 / 126

data



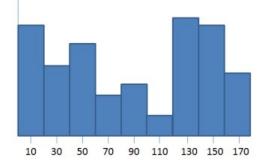
C. BUCHE - buche@enib.fr

Classification Clustering Tests Feature extraction

HOG+SVM

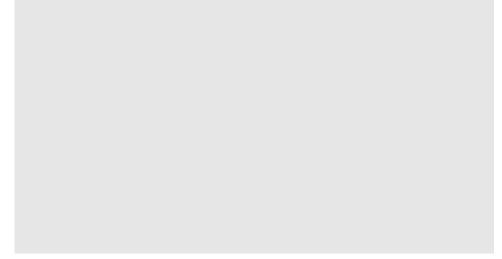
8x8 pixel cells within the detection window

Within a cell, we compute the gradient vector at each pixel





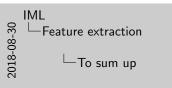
Page 123 :



Ŷ.



Page 124 :



Define problem (data)
 List tools (algorithms)
 Evaluate tools to find the best or

 Precision
 Recall
 F1

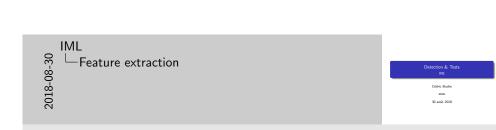
Page 125 :

- ▷ Define problem (data)
- ▶ List tools (algorithms)
- ▷ Evaluate tools to find the best one
 - ◊ Accuracy
 - ◊ Precision
 - ◊ Recall
 - ◊ F1

C. BUCHE - buche@enib.fr	IML

125 / 126

Detection & Tests IML	
Cédric Buche ENIB	



Page 126 :