
29/09/2016

Interaction and
Verification

A. Beugnard
SIIA – IV – C2

2021



Avancement 2 / 64

1 Introduction

2 Interface, interaction

3 Interaction models

4 Spécification



Avancement 3 / 64

1 Introduction

2 Interface, interaction

3 Interaction models

4 Spécification



Avancement 4 / 64

1 Introduction

2 Interface, interaction

3 Interaction models

4 Spécification



Interaction and communication 5 / 64

Why do we communicate?
▶ Coordination, cooperation, deal, . . .
What do we exchange?
▶ Information (status, results, intentions, . . .)
How do we communicate?
▶ By observation (1 active/1 passive)
▶ By sharing (canals, memory, conventions) messages (many

active actors ; ex. expeditors, receivers)



Requirements 6 / 64

▶ Transport protocol (shared)
▶ Communication language (shared)
▶ Interaction protocol (shared)
This course focusses on Interaction protocol.
▶ Whom are we communicating with
▶ How initiating an exchange
▶ (Out of scope) Effect of the communication



Classification - technics 7 / 64

Classification criteria?
▶ Active/passive actors
▶ How many actors : 2, more than 2
▶ Actor’s roles : symmetric or not
▶ Who initiate the communication
▶ Any shared state
▶ Asynchronous or synchronous
▶ Blocking or not
▶ Message order ensured (FIFO) [asynchrone]
▶ Loss of message [fault management]



Classification - semantic 8 / 64

Classification criteria?
▶ Let know
▶ Request for information
▶ Request for doing
▶ Answers
▶ Promisses
▶ Proposals
▶ Deals
▶ Choose, elect, decide
▶ . . .



9 / 64

2-interaction



2-interaction 10 / 64

4 models :
▶ Synchronous
▶ Asynchronous
▶ Future
▶ By necessity [Car93]



Synchronous 11 / 64

Client Server

blocked

Client side
▶ call
▶ wait result
▶ get result
▶ continue
Nit visible (internal)

Serveur side
▶ wait call
▶ compute
▶ return result
Visible in interface



Synchronous - with threads 12 / 64

Client Server

blocked

Client Server

blocked

Or Rendezvous (ADA)



Asynchronous 13 / 64

Client Server

not blocked

Client side
▶ send message
▶ continue

Serveur side
▶ wait message
▶ compute

We must have 2 threads . . .(either on the same machine, either
on remote ones).



Future 14 / 64

Client Server

not blocked
until result expected

Client side
▶ call
▶ continue
▶ wait result when

needed
▶ get result
▶ continue

Server side
▶ wait call
▶ compute
▶ return result

We must have 2 threads . . .(either on the same machine, either
on remote ones).



By necessity 15 / 64

Abstraction and implicit mechanism that behaves as :
▶ Asynchronous ; if the result is not required
▶ Synchrone ; if the result is immediately required
▶ Future ; if the result is required later



Active/Passive 16 / 64

Interactions are interesting only among active entities 1

Passive entities are only useful for sharing states.

Sharing state is difficult ; it introduces mutual exclusion issues
(safety) and deadlocks issues (vivacity).

1. With a single thread, communication can oly be synchronous.



Synchronous - with threads - more than 2 actors 17 / 64

Client 1 Server Client 3 Client 2

x

Competition fot accessing the shared state x .



Safety/Vivacity 18 / 64

Safety properties ensure nothing wrong happens. For
instance ; invariant satisfaction or mutex . . .

Vivacity properties ensure that something happens. For
instance, no deadlocks.



Languages 19 / 64

Synchronous AsynchronousFuture By necessity
ADA, C,
Caml, func-
tional, object

dart, erlang,
elixir, via li-
braries

via libraries ProActive
[OW217], via
libraries



Remote connection 20 / 64

Previous properties apply to remote (or heterogeneous)
interactions.

Client IDL Server

Stub Compiler Skeleton

ORB protocol ORB

offersuses

This is the principle of RPC, CORBA, Java RMI, .NET, etc.
connectors



21 / 64

2+-interaction



2+-interaction 22 / 64

Interactions with more than 2 actors :
▶ Synchronization barrier
▶ Broadcast
▶ Asynchronous (ex ; UDP)
▶ With quaranties

▶ Consensus
▶ Group membership
▶ Tuple space
▶ Conversational language



2+-interaction 23 / 64

More abstract interactions :
▶ Publish/subscribe [EFGK03]
▶ Negotiation
▶ Vote
▶ Auction
▶ . . .
▶ Communication abstractions



Synchronization barrier 24 / 64

A basic coordination mechanism that ensures that entities have
reached a specific point (the barrier) to continue their activity.



Broadcast 25 / 64

Sender Receiver Receiver Receiver
Properties
▶ No message loss
▶ Non message

replication
▶ Fairness : all

receive
▶ Atomicity : all or

none
▶ Keep messages

sequence

UDP : loss, non guaranty
reliable broadcast algorithms.
Ensure message order (red, green, blue)



Reliable broadcast 26 / 64

Ensures that a message sent to a group is received by all or
none.



Distributed systems basics 27 / 64

Distributed systems study the interactions between processes
(machine, actors, agents) by taking into account :
▶ The transmission delays
▶ The potential errors of the actors
▶ The potential errors of the communication channels
Distributed algorithms propose solutions to control the properties
when theoretical solutions exist.



Transmission delays 28 / 64

Messages are not transmitted instantly ; they can be lost.
It is impossible to distinguish between a lost message and a very
long transmission time.
The notion of global time is meaningless - each actor has his own
time. It is impossible to date an event in an absolute manner.
event.
The notion of causality must be reconstructed ; lamport clock,
vector clock, etc.



Causality 29 / 64

m1 causally precedes m2 (m1 ⇝ m2) iff :
▶ p sent m1 before sending m2

▶ p received m1 then sent m2

▶ There exists m3 so that m1 ⇝ m3 ∧ m3 ⇝ m2



Errors 30 / 64

It must be taken into account that an actor (process, program,
machine, channel, network, human, etc.) can make mistakes.
▶ By omission ; forgets to send a message, to reply, . . .
▶ Arbitrary ; sending the wrong message (voluntarily 2 or not)
For omissions, the simplest model consists of considering that an
actor breaks down (crash-stop model) ; when he fails to send a
message, it fails to send all the following

2. the actor is said to be malicious or Byzantine.



Assumptions on channels - PL 31 / 64

Perfect (or Reliable) links (PL)
▶ (Validity) If pi and pj are correct, then any messagesent by pi to

pj is eventually delivered to pj

▶ (No duplication) No message iis delivered more than once
▶ (No creation) No message is delivered without being sent



Assumptions on channels - FIFO 32 / 64

Reliable FIFO links (FIFO)
▶ Perfect links
▶ (FIFO) Messages are delivered in the same order as they are

sent.
In this course, we assume channels are Perfect Links.



Properties of broadcast 33 / 64

Best-effort Validity, No duplication, No creation (as PL)
Reliable BE + Agreement : If a message m is delivered to a

correct receiver, then all correct receivers will receive
the message.

Uniform BE + Uniform agreement : For all message m, if a
receiver get m then all correct receivers get it.

See R. Guerraoui courses for algorithms descriptions.



Best-Effort vs Reliable Broadcast 34 / 64

A1 A2 A3

crash lost

A1 do its best, but
while correct A3 does
not receive a message
A2 received.

A1 A2 A3

crash

All correct
processes receive
the message.

A1 A2 A3

crash

Or none.



Reliable vs Uniform Broadcast 35 / 64

A1 A2 A3

crash

crash

lost

Reliable broadcast,
since A2 being not
correct, m can be lost.

A1 A2 A3

crash

crash

Evn if a receiver
crashes, all
receive. . .

A1 A2 A3

crash

crash

. . .or none.



Causal broadcast 36 / 64

Ensure order of messages.
If p reveives m2 then p received all m such that m⇝ m2



Is causality met? 37 / 64

A1 A2 A3

No.

A1 A2 A3

No.

A1 A2 A3

No.



Total order total et total causal order 38 / 64

Ensure all processes see the same message order.
If the order ensure causality, it’s a total causal order.



Total order? 39 / 64

A1 A2 A3

Total, not causal

A1 A2 A3

Total and causal

A1 A2 A3

Total and causal

Blue messages are causally independent from red and green
ones.



Reliable broadcast abstractions 40 / 64

Best-effort broadcast
▶ Guarantees reliability only if sender is correct

Reliable broadcast
▶ Guarantees reliability independent of whether sender is correct

Uniform reliable broadcast
▶ Also considers behavior of failed nodes

Total reliable broadcast
▶ Reliable broadcast with same delivery order for all correct

nodes

Causal reliable broadcast
▶ Reliable broadcast with causal delivery order



Consensus 41 / 64

Total order can be implemented thanks to a consensus algorithm.
Consensus
▶ (Validity) The chosen value has been proposed
▶ (Uniform agreement) : Two different correct processes do the

same choice
▶ (Termination) Any correct process eventually choose
▶ (Integrity) Any process choose once, at most



Group membership 42 / 64

How can we know all processes involved in an interaction?
▶ In case of failures
▶ When processes come and leave
How can we ensure all processes share the same view (list of
involved processes).



Failure detector vs Group membership 43 / 64

A1 A2 A3 A4

crashcrash

suspect(A2)

suspect(A2,A3)

suspect()

suspect(A3)

suspect(A2,A3)

No coordination

A1 A2 A3 A4

crashcrash

V =(A1,A4)
V =(A1,A4)

Coordination



Group membership 44 / 64

▶ Actors are informed of crashes, entries and exits ; actors are
said to install views

▶ We assume no loss of information
▶ Actors install all the same sequence of views.



Properties : Group membership 45 / 64

Taking into account only crashes (neither entries nor exits) :
▶ (local monotony) If an actor installs a view (j,M) after installing

(k ,N), then j > k and M ⊊ N
▶ (Agreement) No pairs of actors install views (j,M) and (j,M ′)

such that M ̸= M ′

▶ (Completness) If an actor a crashes, then there exists j an
integer such that any actor eventually install a view (j,M) such
taht a /∈ M

▶ (Precision) If an actor a installed a view (i,M) and a /∈ M then
a crashed



Languages 46 / 64

▶ Coordination languages (à la Linda)
▶ Conversation langages (ex. RCA)



Tuple spaces 47 / 64

Original model : Linda [ea94]

SC1

SC2
SC3

SC4

SC5TupleSpace

Linda introduced 4 opérations :
in read and remove atomically a tuple
rd read, and keep unchanged, a tuple

out add a tuple (possible replication)
eval create a new process



Example 48 / 64

A tuple describes a journey :
▶ (destination, date, duration, cost, properties).

Processes (travel agency) produce offers (out).

Processes (client, travel agency) consult them (rd) or book them
(in).



Conclusion on tuple spacess 49 / 64

▶ Simple et abstract mechanism.
▶ No coupling among processes ; no need to know each others.
▶ The protocol is encoded in the tuple

Implementations : CppLinda, Erlinda, JavaSpace, PyLinda, etc.



Example : Graphes RCA [TE99] 50 / 64

État Transition
initial final elementary

action
composite
action

unbounded
wait

bounded
wait

communi-
cation

internal external



RCA analysis 51 / 64

Good points
▶ Globale overview
▶ Vision of time (automata)
Negative points
▶ No roles
▶ No dynamic (numbers of actors)



52 / 64

Connectors



Properties 53 / 64

▶ Number of actors, roles (unicast, multicast, broadcast)
▶ Direction
▶ Initiator (push/pull)
▶ Synchronous/asynchronous (blocking)
▶ Stream/unique
▶ Policy (exact, best effort, ACID, etc.)
▶ Safety, cyphered (kind of policy)
▶ Size, rhythm, jitter (jitter), bandwidth



Taxonomy [MMP00] 54 / 64

Type of connector

Facilitation Distributor

Conversion Adaptor

Facilitation Linkage

Coordination
facilitation

Arbitrator

Communication Stream

Communication
conversion

Data access

Communication
coordination Procedure call

Event



Mechanism 55 / 64

▶ Memory (register, table, stack, etc.)
▶ Protocol/language
▶ Transaction
These means are interdependent (protocols and transactions use
memory) ; it is the usage rules and policies that differentiate them.



Complex connector 56 / 64

Server 1

Server 2

Client

Server 3

Is it a client that can choose between 3 servers, a load balancing
system or a load balancing system or a redundant system with
consensus?

More ambiguity.



Complex connector 56 / 64

Server 1

Server 2

Client

Server 3Consensus

Is it a client that can choose between 3 servers, a load balancing
system or a load balancing system or a redundant system with
consensus? More ambiguity.



Complex connector 56 / 64

Server 1

Server 2

Client

Server 3Load Balancing

Is it a client that can choose between 3 servers, a load balancing
system or a load balancing system or a redundant system with
consensus? More ambiguity.



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector

?

?



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector

?

?



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector

?

?



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī

connector
?

?



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector

?

?



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector

?

?



Connectors lifecycle 58 / 64

Property ??

A connector

Property Ī? CI

A connection

CICL1 ĪPCL2 P̄

Connecting components

Here ?



Connectors lifecycle 58 / 64

Property ??

A connector

Property Ī? CI

A connection

CICL1 ĪPCL2 P̄

Connecting components

Here ?



Connectors lifecycle 58 / 64

Property ??

A connector

Property Ī? CI

A connection

CICL1 ĪPCL2 P̄

Connecting components

Here ?



Connectors lifecycle 58 / 64

Property ??

A connector

Property Ī? CI

A connection

CICL1 ĪPCL2 P̄

Connecting components

Here?



Generator 59 / 64

Something that transforms a role, connected to a port – hence a
socket – into a component that provides the complementary
interface to the port and ensures the property of the connector.
Quelque chose qui transforme un rôle, relié à un port – donc une
prise – en un composant qui offre l’interface complémentaire du
port et qui assure la propriété du connecteur.

ex : en Corba, .NET, RPC, Java RMI. . .stub and skeleton
generators
Stubs and skeletons are connecting components.



Connectors lifecycle (completed) 60 / 64

Property ??

Property Ī? CI CICL1 ĪPCL2 P̄

B
ou

nd
Fr

ee

ImplementationAbstraction

A connector

A connection Connecting component

Generators



Examples 61 / 64

▶ Procedure calls (PC)
▶ Remote procedure call (RPC)
▶ CORBA, RMI, . . .
▶ Client/server with load balancing
▶ Client/server with consensus
▶ etc



Conclusion on connectors 62 / 64

Many connectors exist ; sometime independant from the
component model (ex. protocols), sometime associated to a
model (CORBA RPC).

Protocols are“connectors” found on the shelves as components,
with an explicit interface (port = API).

Using a component as connector requires to adopt its interface
as a communicating protocol.

A connector is delivered as a generator.



Avancement 63 / 64

1 Introduction

2 Interface, interaction

3 Interaction models

4 Spécification



References I 64 / 64

D Caromel.
Toward a method of object-oriented concurrent programming.
Communications of the ACM, 1993.

Carriero et al.
The linda alternative to message-passing systems.
Parallel Computing, 2(4) :633—-655, April 1994.

P Eugster, P Felber, R Guerraoui, and A Kermarrec.
The Many Faces of Publish/Subscribe.
ACM Computing Surveys (CSUR), 2003.

N Mehta, Nenad Medvidovic, and S Phadke.
Towards a taxonomy of software connectors.
Proceedings of the 22nd international conference on Software Engineering (ICSE), pages 178–187, 2000.

OW2.
Proactive web site.
http://proactive.activeeon.com//, 2017.

Erwan Tranvouez and Bernard Espinasse.
Protocoles de coopération pour le réordonnancement d’atelier.
In JFIADSMA, 1999.

http://proactive.activeeon.com//

	Introduction
	Interface, interaction
	Interaction models
	2-interaction
	2+-interaction
	Connectors

	Spécification

