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Interaction and communication 5 / 64

Why do we communicate?
▶ Coordination, cooperation, deal, . . .
What do we exchange?
▶ Information (status, results, intentions, . . .)
How do we communicate?
▶ By observation (1 active/1 passive)
▶ By sharing (canals, memory, conventions) messages (many

active actors ; ex. expeditors, receivers)



Requirements 6 / 64

▶ Transport protocol (shared)
▶ Communication language (shared)
▶ Interaction protocol (shared)
This course focusses on Interaction protocol.
▶ Whom are we communicating with
▶ How initiating an exchange
▶ (Out of scope) Effect of the communication



Classification - technics 7 / 64

Classification criteria?
▶ Active/passive actors
▶ How many actors : 2, more than 2
▶ Actor’s roles : symmetric or not
▶ Who initiate the communication
▶ Any shared state
▶ Asynchronous or synchronous
▶ Blocking or not
▶ Message order ensured (FIFO) [asynchrone]
▶ Loss of message [fault management]



Classification - semantic 8 / 64

Classification criteria?
▶ Let know
▶ Request for information
▶ Request for doing
▶ Answers
▶ Promisses
▶ Proposals
▶ Deals
▶ Choose, elect, decide
▶ . . .
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2-interaction
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4 models :
▶ Synchronous
▶ Asynchronous
▶ Future
▶ By necessity [Car93]



Synchronous 11 / 64

Client Server

blocked

Client side
▶ call
▶ wait result
▶ get result
▶ continue
Nit visible (internal)

Serveur side
▶ wait call
▶ compute
▶ return result
Visible in interface



Synchronous - with threads 12 / 64

Client Server

blocked

Client Server

blocked

Or Rendezvous (ADA)



Asynchronous 13 / 64

Client Server

not blocked

Client side
▶ send message
▶ continue

Serveur side
▶ wait message
▶ compute

We must have 2 threads . . .(either on the same machine, either
on remote ones).



Future 14 / 64

Client Server

not blocked
until result expected

Client side
▶ call
▶ continue
▶ wait result when

needed
▶ get result
▶ continue

Server side
▶ wait call
▶ compute
▶ return result

We must have 2 threads . . .(either on the same machine, either
on remote ones).



By necessity 15 / 64

Abstraction and implicit mechanism that behaves as :
▶ Asynchronous ; if the result is not required
▶ Synchrone ; if the result is immediately required
▶ Future ; if the result is required later



Active/Passive 16 / 64

Interactions are interesting only among active entities 1

Passive entities are only useful for sharing states.

Sharing state is difficult ; it introduces mutual exclusion issues
(safety) and deadlocks issues (vivacity).

1. With a single thread, communication can oly be synchronous.



Synchronous - with threads - more than 2 actors 17 / 64

Client 1 Server Client 3 Client 2

x

Competition fot accessing the shared state x .



Safety/Vivacity 18 / 64

Safety properties ensure nothing wrong happens. For
instance ; invariant satisfaction or mutex . . .

Vivacity properties ensure that something happens. For
instance, no deadlocks.



Languages 19 / 64

Synchronous AsynchronousFuture By necessity
ADA, C,
Caml, func-
tional, object

dart, erlang,
elixir, via li-
braries

via libraries ProActive
[OW217], via
libraries



Remote connection 20 / 64

Previous properties apply to remote (or heterogeneous)
interactions.

Client IDL Server

Stub Compiler Skeleton

ORB protocol ORB

offersuses

This is the principle of RPC, CORBA, Java RMI, .NET, etc.
connectors
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2+-interaction



2+-interaction 22 / 64

Interactions with more than 2 actors :
▶ Synchronization barrier
▶ Broadcast
▶ Asynchronous (ex ; UDP)
▶ With quaranties

▶ Consensus
▶ Group membership
▶ Tuple space
▶ Conversational language



2+-interaction 23 / 64

More abstract interactions :
▶ Publish/subscribe [EFGK03]
▶ Negotiation
▶ Vote
▶ Auction
▶ . . .
▶ Communication abstractions



Synchronization barrier 24 / 64

A basic coordination mechanism that ensures that entities have
reached a specific point (the barrier) to continue their activity.



Broadcast 25 / 64

Sender Receiver Receiver Receiver
Properties
▶ No message loss
▶ Non message

replication
▶ Fairness : all

receive
▶ Atomicity : all or

none
▶ Keep messages

sequence

UDP : loss, non guaranty
reliable broadcast algorithms.
Ensure message order (red, green, blue)



Reliable broadcast 26 / 64

Ensures that a message sent to a group is received by all or
none.



Distributed systems basics 27 / 64

Distributed systems study the interactions between processes
(machine, actors, agents) by taking into account :
▶ The transmission delays
▶ The potential errors of the actors
▶ The potential errors of the communication channels
Distributed algorithms propose solutions to control the properties
when theoretical solutions exist.



Transmission delays 28 / 64

Messages are not transmitted instantly ; they can be lost.
It is impossible to distinguish between a lost message and a very
long transmission time.
The notion of global time is meaningless - each actor has his own
time. It is impossible to date an event in an absolute manner.
event.
The notion of causality must be reconstructed ; lamport clock,
vector clock, etc.



Causality 29 / 64

m1 causally precedes m2 (m1 ⇝ m2) iff :
▶ p sent m1 before sending m2

▶ p received m1 then sent m2

▶ There exists m3 so that m1 ⇝ m3 ∧ m3 ⇝ m2



Errors 30 / 64

It must be taken into account that an actor (process, program,
machine, channel, network, human, etc.) can make mistakes.
▶ By omission ; forgets to send a message, to reply, . . .
▶ Arbitrary ; sending the wrong message (voluntarily 2 or not)
For omissions, the simplest model consists of considering that an
actor breaks down (crash-stop model) ; when he fails to send a
message, it fails to send all the following

2. the actor is said to be malicious or Byzantine.



Assumptions on channels - PL 31 / 64

Perfect (or Reliable) links (PL)
▶ (Validity) If pi and pj are correct, then any messagesent by pi to

pj is eventually delivered to pj

▶ (No duplication) No message iis delivered more than once
▶ (No creation) No message is delivered without being sent



Assumptions on channels - FIFO 32 / 64

Reliable FIFO links (FIFO)
▶ Perfect links
▶ (FIFO) Messages are delivered in the same order as they are

sent.
In this course, we assume channels are Perfect Links.



Properties of broadcast 33 / 64

Best-effort Validity, No duplication, No creation (as PL)
Reliable BE + Agreement : If a message m is delivered to a

correct receiver, then all correct receivers will receive
the message.

Uniform BE + Uniform agreement : For all message m, if a
receiver get m then all correct receivers get it.

See R. Guerraoui courses for algorithms descriptions.



Best-Effort vs Reliable Broadcast 34 / 64

A1 A2 A3

crash lost

A1 do its best, but
while correct A3 does
not receive a message
A2 received.

A1 A2 A3

crash

All correct
processes receive
the message.

A1 A2 A3

crash

Or none.



Reliable vs Uniform Broadcast 35 / 64

A1 A2 A3

crash

crash

lost

Reliable broadcast,
since A2 being not
correct, m can be lost.

A1 A2 A3

crash

crash

Evn if a receiver
crashes, all
receive. . .

A1 A2 A3

crash

crash

. . .or none.



Causal broadcast 36 / 64

Ensure order of messages.
If p reveives m2 then p received all m such that m⇝ m2



Is causality met? 37 / 64

A1 A2 A3

No.

A1 A2 A3

No.

A1 A2 A3

No.



Total order total et total causal order 38 / 64

Ensure all processes see the same message order.
If the order ensure causality, it’s a total causal order.



Total order? 39 / 64

A1 A2 A3

Total, not causal

A1 A2 A3

Total and causal

A1 A2 A3

Total and causal

Blue messages are causally independent from red and green
ones.



Reliable broadcast abstractions 40 / 64

Best-effort broadcast
▶ Guarantees reliability only if sender is correct

Reliable broadcast
▶ Guarantees reliability independent of whether sender is correct

Uniform reliable broadcast
▶ Also considers behavior of failed nodes

Total reliable broadcast
▶ Reliable broadcast with same delivery order for all correct

nodes

Causal reliable broadcast
▶ Reliable broadcast with causal delivery order



Consensus 41 / 64

Total order can be implemented thanks to a consensus algorithm.
Consensus
▶ (Validity) The chosen value has been proposed
▶ (Uniform agreement) : Two different correct processes do the

same choice
▶ (Termination) Any correct process eventually choose
▶ (Integrity) Any process choose once, at most



Group membership 42 / 64

How can we know all processes involved in an interaction?
▶ In case of failures
▶ When processes come and leave
How can we ensure all processes share the same view (list of
involved processes).



Failure detector vs Group membership 43 / 64

A1 A2 A3 A4

crashcrash

suspect(A2)

suspect(A2,A3)

suspect()

suspect(A3)

suspect(A2,A3)

No coordination

A1 A2 A3 A4

crashcrash

V =(A1,A4)
V =(A1,A4)

Coordination



Group membership 44 / 64

▶ Actors are informed of crashes, entries and exits ; actors are
said to install views

▶ We assume no loss of information
▶ Actors install all the same sequence of views.



Properties : Group membership 45 / 64

Taking into account only crashes (neither entries nor exits) :
▶ (local monotony) If an actor installs a view (j,M) after installing

(k ,N), then j > k and M ⊊ N
▶ (Agreement) No pairs of actors install views (j,M) and (j,M ′)

such that M ̸= M ′

▶ (Completness) If an actor a crashes, then there exists j an
integer such that any actor eventually install a view (j,M) such
taht a /∈ M

▶ (Precision) If an actor a installed a view (i,M) and a /∈ M then
a crashed



Languages 46 / 64

▶ Coordination languages (à la Linda)
▶ Conversation langages (ex. RCA)
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Original model : Linda [ea94]

SC1

SC2
SC3

SC4

SC5TupleSpace

Linda introduced 4 opérations :
in read and remove atomically a tuple
rd read, and keep unchanged, a tuple

out add a tuple (possible replication)
eval create a new process
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A tuple describes a journey :
▶ (destination, date, duration, cost, properties).

Processes (travel agency) produce offers (out).

Processes (client, travel agency) consult them (rd) or book them
(in).



Conclusion on tuple spacess 49 / 64

▶ Simple et abstract mechanism.
▶ No coupling among processes ; no need to know each others.
▶ The protocol is encoded in the tuple

Implementations : CppLinda, Erlinda, JavaSpace, PyLinda, etc.



Example : Graphes RCA [TE99] 50 / 64

État Transition
initial final elementary

action
composite
action

unbounded
wait

bounded
wait

communi-
cation

internal external



RCA analysis 51 / 64

Good points
▶ Globale overview
▶ Vision of time (automata)
Negative points
▶ No roles
▶ No dynamic (numbers of actors)
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Connectors



Properties 53 / 64

▶ Number of actors, roles (unicast, multicast, broadcast)
▶ Direction
▶ Initiator (push/pull)
▶ Synchronous/asynchronous (blocking)
▶ Stream/unique
▶ Policy (exact, best effort, ACID, etc.)
▶ Safety, cyphered (kind of policy)
▶ Size, rhythm, jitter (jitter), bandwidth



Taxonomy [MMP00] 54 / 64

Type of connector

Facilitation Distributor

Conversion Adaptor

Facilitation Linkage

Coordination
facilitation

Arbitrator

Communication Stream

Communication
conversion

Data access

Communication
coordination Procedure call

Event



Mechanism 55 / 64

▶ Memory (register, table, stack, etc.)
▶ Protocol/language
▶ Transaction
These means are interdependent (protocols and transactions use
memory) ; it is the usage rules and policies that differentiate them.



Complex connector 56 / 64

Server 1

Server 2

Client

Server 3

Is it a client that can choose between 3 servers, a load balancing
system or a load balancing system or a redundant system with
consensus?

More ambiguity.
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Complex connector 56 / 64

Server 1

Server 2

Client

Server 3Load Balancing

Is it a client that can choose between 3 servers, a load balancing
system or a load balancing system or a redundant system with
consensus? More ambiguity.
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Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector

?

?
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Ī
connector

?

?



Connector or component? 57 / 64

Component one

Component two

Component one

connector

Component two

I

Ī
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Component one

Component two

Component one

connector

Component two

I

Ī

I

Ī

I

Ī
connector
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Property ??

A connector

Property Ī? CI

A connection

CICL1 ĪPCL2 P̄

Connecting components

Here ?
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Property ??

A connector

Property Ī? CI

A connection

CICL1 ĪPCL2 P̄

Connecting components

Here?
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Something that transforms a role, connected to a port – hence a
socket – into a component that provides the complementary
interface to the port and ensures the property of the connector.
Quelque chose qui transforme un rôle, relié à un port – donc une
prise – en un composant qui offre l’interface complémentaire du
port et qui assure la propriété du connecteur.

ex : en Corba, .NET, RPC, Java RMI. . .stub and skeleton
generators
Stubs and skeletons are connecting components.



Connectors lifecycle (completed) 60 / 64

Property ??

Property Ī? CI CICL1 ĪPCL2 P̄

B
ou

nd
Fr

ee

ImplementationAbstraction

A connector

A connection Connecting component

Generators
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▶ Procedure calls (PC)
▶ Remote procedure call (RPC)
▶ CORBA, RMI, . . .
▶ Client/server with load balancing
▶ Client/server with consensus
▶ etc



Conclusion on connectors 62 / 64

Many connectors exist ; sometime independant from the
component model (ex. protocols), sometime associated to a
model (CORBA RPC).

Protocols are“connectors” found on the shelves as components,
with an explicit interface (port = API).

Using a component as connector requires to adopt its interface
as a communicating protocol.

A connector is delivered as a generator.
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