
L. Nana 19/11/2019 1

Master of Computer Sciences 19/11/2019

Dependability of robotic applications

L. Nana



L. Nana 19/11/2019 2

Master of Computer Sciences 19/11/2019

Plan
●Brief overview of dependability
●Error prevention
●Fault tolerance
●Software fault tolerance
●Case study with PILOT and its 

environment



L. Nana 19/11/2019 3

Master of Computer Sciences 19/11/2019

Dependability
● Property that allows users of a system to place 

justified trust in the service it delivers.
● 2 main approaches :

– Error prevention: 
● Traditional approach.
● Goal : Spread the faults before regular use of the system.

=> other name : fault intolerance.
● Based on test and formal verification methods.

– Fault tolerance: 
● Ability of a system to deliver a correct service even in the 

presence of faults.
● Relies on redundancy.



L. Nana 19/11/2019 4

Master of Computer Sciences 19/11/2019

Basic definitions
● Service delivered by the system: behavior of the 

system as perceived by its user (s).
● User : another system (human or physical) that

interacts with the system.
● Failure : the service delivered no longer fulfills

the function (s) of the system.
● Error : Part of the system state that is likely to 

cause a failure.
● Fault : cause assumed or adjudged of an error.
● Recursive causality relationship:

….. → Failure → fault → error→ failure→ …



L. Nana 19/11/2019 5

Master of Computer Sciences 19/11/2019

Classes of faults
● Classification useful to avoid mistakes and to 

prevent their possibly disastrous consequences on 
the functioning of the system.

● Three main classification criteria:
– Nature :

● Accidental.
● Intentional.

– Origin:
● Human.
● Physical phenomenon.
● Faults internal to the system,
● External faults resulting from the interaction between the 

system and its environment.
– Temporal persistence:

● Permanent faults.
● Temporary faults.



L. Nana 19/11/2019 6

Master of Computer Sciences 19/11/2019

Classes of failures
● A system does not always fail in the same way.
● Three main criteria of classification :

– Domain :
● Value failure : the value of the service delivered does not 

conform to its specification.
● Temporal failure : service delivery times are not compliant 

with the specification (early or late failure).
– Users perception:

● Coherent failures.
● Inconsistent failures, also called Byzantine failures.

– Consequences on environment:
● Minor or benign failures.
● Catastrophic failures.



L. Nana 19/11/2019 7

Master of Computer Sciences 19/11/2019

Formal verification
● 2 main approaches: Model-checking and 

demonstration.
● Model-checking: fully automated, 2 sub 

approaches :
– Synchronous: 

● Characterized by the fact that it considers cyclic systems, 
whose overall behavior, by synchronous composition, can 
involve a set of events (qualified as simultaneous) on the 
resulting transition.

● Widely used for designing reactive systems.
● Has given rise to many complete programming environments 

including some dedicated to control-command 
(STATECHARTS, SYNCCHARTS, GRAFCET, ...), or 
mission programming (ORCCAD). 

– Asynchronous: Petri nets, etc.
● Demonstration: tools of proof (PVS, COQ, ...).



L. Nana 19/11/2019 8

Master of Computer Sciences 19/11/2019

Test
● Purpose: To minimize the chances of failure 

appearing when using the software.
● 2 approaches :

– Static test or control : one seeks in a static way (without 
execution of code) simple and frequent faults.

– Dynamic test:
● Code executed.
● Definition of test data, that is to say inputs that will be 

provided to the software during its execution.
● Test Set or Test Data Set: A set of test data produced for 

testing.
● Exhaustive test impossible => need to define a test set 

constituting a representative sample of all the possible entries.



L. Nana 19/11/2019 9

Master of Computer Sciences 19/11/2019

Causes of software errors
● The software development process has an 

impact on the types of potential errors.
● Poor knowledge of the programming 

language or inexperience of the 
programmer.

● Distortion or loss of information during the 
development process.

● Bad specification or misunderstanding of 
specifications, etc.



L. Nana 19/11/2019 10

Master of Computer Sciences 19/11/2019

Classification of software errors
● 6 classes of errors:

– Calculation errors : for example, write "x: = x + 2" instead of "x: = 
y + 2".

– Logic errors : bad predicate expression. For example, by writing 
"if (a <b) then" instead of "if (a> b) then".

– I / O errors : bad formatting, bad access to communication 
medium, etc.

– Interface errors : bad communication between the software's 
internal components (e.g. call of the P1 procedure instead of P2, 
incorrect parameter passing, etc.).

– Data processing errors : bad access or mishandling of data (misuse 
of pointers, undefined variables, overflow of a table index, etc.).

– Data definition errors : erroneous type in the declaration of a 
variable (for example, a variable was declared as integer when it 
should have been declared as real), error in accuracy (for example, 
a value is in simple precision instead of double). 



L. Nana 19/11/2019 11

Master of Computer Sciences 19/11/2019

Classification of test techniques
● According to the criterion adopted for the choice 

of representative test data :
– Functional techniques or black boxes : production of 

test data based on the specification of the software 
without worrying about the internal structure of the 
software.

– Structural techniques or white boxes : Test data are 
produced by analyzing the source code.

● Depending on the execution or not of the binary 
code:
– Dynamic test techniques : The binary code is executed 

and the actual behavior of the program is examined.
– Static testing techniques: The passive form of the 

program (source code) is examined.



L. Nana 19/11/2019 12

Master of Computer Sciences 19/11/2019

Notes on the test
● The testing process often uses a combination of 

functional, structural, dynamic and static 
techniques.

● Each correction inevitably leads to a risk of new 
errors appearing with a frequency often greater 
than during the previous development of the 
software.
=> Need to re-run on the tested program, a 
significant part of the old TD ( non-regression 
technique).



L. Nana 19/11/2019 13

Master of Computer Sciences 19/11/2019

Redundancy
● Presence in the system of elements fulfilling the 

same functions as all (total redundancy) or part 
(partial redundancy) of the system.

● Primary element : part of the system whose errors 
are tolerated by the redundant part.

● Implementation: Duplication in terms of 
specifications or implementation of elements 
ensuring degraded specifications.

● 2 types of redundancies: static, dynamic.



L. Nana 19/11/2019 14

Master of Computer Sciences 19/11/2019

Static redundancy
● The redundant element participates in performing 

the task before an error is detected and remains 
active.

● Typical example: triple modular redundancy

– Tolerance of errors of one among the 3 components.
– Implicit assumption that the probability that more than 

one element produces the same erroneous result is 
negligible.

● Generalization to N elements (odd N): N modular 
redundancy.

● Another name: masking redundancy.

Component

Component

Component VoteInput Output



L. Nana 19/11/2019 15

Master of Computer Sciences 19/11/2019

Dynamic redundancy
● The redundant element only takes part in carrying 

out the task after detection and reaction to an error.
● 2 forms: active, passive.
● Active redundancy: 

– The redundant element is permanently active.
– It receives the same information as the primary element 

and processes it in parallel.
– Only the primary element outputs the results.

● Passive redundancy:
– The redundant element remains passive in the absence 

of error.
– In case of error, uses information stored before the 

detection of error to take over from the primary element



L. Nana 19/11/2019 16

Master of Computer Sciences 19/11/2019

The different phases of fault 
tolerance

● 4 main functions:
– Error detection.
– Damage assessment.
– Error handling.
– Fault treatment.

● Error detection is always the first function 
performed.

● Order of intervention of the other steps not 
predetermined and possibility of strong interaction 
between them.



L. Nana 19/11/2019 17

Master of Computer Sciences 19/11/2019

Error detection
● Based on hardware or software tests mechanisms dedicated 

to the monitoring of the state of the system.
● Finished by issuing an error signal (s).
● Ideal criteria for controls: 

– Be based solely on the specification of the service delivered.
– Check the absolute conformity of the behavior of the system to its 

specification.
– Be independent of the controlled system itself.

● Ideal criteria difficult to meet in practice:
– Specification very often expressed in terms of information external 

to the computer system not taken into account by the computer 
verification.

– Cost and performance constraints unacceptable in most cases, for 
runtime checks.

– The independence between the system and its control can not be 
absolute.

=> Limitation to a standard lower than the ideal.



L. Nana 19/11/2019 18

Master of Computer Sciences 19/11/2019

Damage assessment
● Purpose: Identification of failed components.
● Justifications:

– Error detection signal very often insufficient to identify all 
the failed components.

– Possible propagation of invalid information between the 
occurrence of the fault and its erroneous consequences.

● Two approaches:
– Static approach: 

● Estimate a priori of the consequences of any error.
● In case of error, all the components involved in the estimation 

of its consequences are supposed to be reached.
● Difficult to adopt in complex systems.

– Dynamic approach:
● Exploring the state of the system after error detection to 

estimate the extent of damage.
● Need to memorize the information on the different transfers 

and to control these transfers.



L. Nana 19/11/2019 19

Master of Computer Sciences 19/11/2019

Error handling
● Aim: to eliminate errors, if possible before a failure occurs.
● 2 forms: error compensation and error recovery.
● Error Compensation: The faulty state has enough 

redundancy to allow the delivery of a non-faulty service 
from the erroneous internal state.

● Error recovery: 
– Substitution of an error-free state to the wrong state.
– 2 forms of substitutions: recovery and continuation.
– Backward error recovery : 

● Data storage (recovery data) in the course of evolution.
● Recovery points: Data storage points.
● System returned to a healthy state that occurred before the occurrence 

of error (restoring recovery points).
– Forward error recovery : 

● Apply fixes to the current state to transform it into a healthy state 
from which the system can operate.



L. Nana 19/11/2019 20

Master of Computer Sciences 19/11/2019

Comparison of error processing 
mechanisms

● Temporal and financial over-costs :
– Error recovery: higher cost during the occurrence of 

error than in its absence.
– Error compensation: shorter and constant duration, but 

more expensive financially.
● Backward / Forward error recovery:

– Backward ER: no assumption on the nature of the fault 
(except no compromising of the recovery mechanism)

⇒ Evaluation of the damage not necessary.
⇒ Recovery possible after any type of error, even unforeseen errors 

in the design of the system.

– Forward ER: greater interest when restoration to an 
earlier state is not possible (e.g. printing).



L. Nana 19/11/2019 21

Master of Computer Sciences 19/11/2019

Fault treatment
● Error handling is not always enough to eliminate the error 

or guarantee that it will not happen again.
● Goal: To prevent one or more faults from being activated 

again.
● First step: diagnosis of fault (locate the causes of errors 

and their nature).
● Repair strategies:

– Replacement: relies on the presence of redundant components in 
reserve, initially inactive, to directly replace the defective 
components.

– Reconfiguration: 
● Distribution of faulty component responsibilities between the healthy 

system components that are running.
● Can be static or dynamic.

● Consequence of fault treatment: Reduction of the potential 
of available redundancy
=> Need for manual intervention to maintain the potential.



L. Nana 19/11/2019 22

Master of Computer Sciences 19/11/2019

Influence of the distribution
● Distributed system: set of processing nodes or 

processors (with embedded memory) 
interconnected by a communication network and 
communicating only by messages.

● The distribution of the processes and data on 
different processors makes it possible to structure 
and manage the redundancy.

● Specific aspects for fault tolerance:
– Error and faults mainly handled by message.
– Need to maintain the coherence of the overall state of 

the system, although not directly observable nor 
manipulable, despite the concomitance of executions.

● 2 approaches: backward recovery of distributed 
operations on distributed data, process replication.



L. Nana 19/11/2019 23

Master of Computer Sciences 19/11/2019

Backward recovery of distributed 
operations

● Purpose: To move distributed data from one consistent 
state to another consistent state.

● Risk of cascade restoration, called “domino effect”.
● Establishment of coherent recovery points to avoid the 

domino effect.
● Let p1, p2, ..., pn be a set of processes that have set 

recovery points at times t1, t2, ..., tn. The set of recovery 
points is consistent at a later time if:
– Between ti and tj, pi and pj have not interacted.
– Between ti and t, pi has not interacted with any process that does 

not belong to the considered set.
● A consistent set of recovery points is called a recovery line. 



L. Nana 19/11/2019 24

Master of Computer Sciences 19/11/2019

Process replication
● Data recovery approach is not adapted in the event of a 

processor failure (access to recovery data).
● First possible solution: 

– Stable storage server.
– Problem: The server can be a bottleneck and therefore limit the 

benefits of the distribution.

● Another approach :
– Creating multiple copies of processes on different processors.
– Different replication approaches: active, passive, semi-active, with 

respectively the same operating principle as masking redundancy, 
passive dynamic redundancy and active dynamic redundancy.

– Fault treatment required, in case of failure, to retrieve the initial 
level of redundancy.



L. Nana 19/11/2019 25

Master of Computer Sciences 19/11/2019

Software fault tolerance

● Main mechanisms:
– Exceptions mechanisms.
– Functional diversification.

● Functional diversification:
– Recovery Blocks.
– N-versions programming.
– N-self-testing programming.



L. Nana 19/11/2019 26

Master of Computer Sciences 19/11/2019

Exceptions mechanisms
● Forward technique: application of corrections to 

the erroneous state.
● Efficient for the treatment of certain failures.
● Limitations :

– Makes programs more difficult to maintain in 
languages such as C because of mixing of exception 
processing code and normal code.

– Any type of probable error must be anticipated and 
appropriate exception treatments must be provided.

– Useless for unanticipated faults like design faults.



L. Nana 19/11/2019 27

Master of Computer Sciences 19/11/2019

Recovery blocks
● Do not need to foresee all possible faults and 

associated recoveries.
● Shape :

Ensure <validity test>
By <primary alternative>
Else by <second alternative>
…
Else by <nth alternative>
Else error;

● Validity test : condition (e. g. predicate on system 
variables) that must be satisfied by the system 
after execution of the recovery block. 



L. Nana 19/11/2019 28

Master of Computer Sciences 19/11/2019

Recovery blocks : case of interactive 
processes

● Take the domino effect into account.
● Different propositions, e. g.

– For a set of cooperating processes, all of these processes enter into 
a conversation before any interaction.

– Each process saves its state before entering a conversation.
– One process can interact with another only if it is part of the same 

conversation.
– Processes only leave the conversation after having each passed 

their validity test.
– All processes restore the saved state if one of the processes in the 

conversation has not passed its acceptance test.
● Approach similar to transactional processes in database 

systems.



L. Nana 19/11/2019 29

Master of Computer Sciences 19/11/2019

N-versions programming 
● N-modular redundancy.
● Concurrent execution of N versions of a program 

(N> 2) of independent but functionally equivalent 
designs.

● Results compared based on a majority vote that 
eliminates erroneous results.

● A specific program called supervisor controls the 
N versions and is responsible for:
– The call of each version,
– Waiting for the outcome of all versions,
– The judgment of the N results. 



L. Nana 19/11/2019 30

Master of Computer Sciences 19/11/2019

N-self-testing programming 
● Self-testing component : addition of error 

detection mechanisms in the component to its 
functional processing capabilities.

● Parallel execution of at least two self-testing 
software components.

● Active dynamic redundancy case:
– Only one component outputs the result.
– In case of failure, another component that has not 

failed, is selected for the output of the result.



L. Nana 19/11/2019 31

Master of Computer Sciences 19/11/2019

Case study with PILOT

● Advantages and drawbacks at the beginning
● Propositions for reinforcing dependability



L. Nana 19/11/2019 32

Master of Computer Sciences 19/11/2019

Advantages and drawbacks
● Advantages of  PILOT for dependability:

– Language level: operational semantics available, 
preconditions and supervising rules, possibility to 
modify missions during execution.

– Control system level : availability of interpretation 
algorithms, of Finite State Machines for the modules.

● Drawbacks :
– « Lack of precisions » regarding the context of use of 

continuous actions.
– Risk of incorrect plans execution.
– Interpretation algorithms and FSM not rigorously tested 

nor formally checked.



L. Nana 19/11/2019 33

Master of Computer Sciences 19/11/2019

Improvements
● Precision of the context of use of 

continuous actions and of their termination.
● Syntax oriented edition.
● Static and dynamic testing of the interpreter.
● Modeling, simulation, testing and 

verification of interpretation algorithms.
● Security of plans modifications during 

execution.



L. Nana 19/11/2019 34

Master of Computer Sciences 19/11/2019

● Illustration of the problem:

● Solution proposed and implemented:
– Notions of normal sequence and specific sequence.
– Context of use: parallelism, preemption.
– At least one normal sequence in a parallel or 

preemption structure.
– For preemption (parallelism), stop continuous actions 

when one (all) normal branch (es) end.

Context of use of continuous actions



L. Nana 19/11/2019 35

Master of Computer Sciences 19/11/2019

Syntax-driven edition
● Principle: ensure syntactic validity after each operation.
● Definition of default blocks used during insert operations.
● Operation:

– Start of construction with an empty sequence.
– Effective consideration of an operation only if the resulting plan is 

syntactically correct.
● Compliance verification of the approach

● Properties checked:
– Could an insertion lead to a syntactically incorrect plan?
– Is there a syntactically correct plan that can not be constructed?
– Environment used: SWI-Prolog.

PlanBeforeInsertion

Selection

ElementToInsertElementSelected

Insertion

ResultingPlan

Validation



L. Nana 19/11/2019 36

Master of Computer Sciences 19/11/2019

Interpreter test
● Specificity: reactive system.
● Static test:

– Code reading.
– Errors detected (management of interruptions, management of the 

termination of continuous actions, inexperience errors, etc.).

● Dynamic test:
– Incremental approach (empty sequence, unique primitives, 

combinations in length, width and depth of primitives).
– Problems: choice of the appropriate length, width and depth; 

relevant combinations.
– Solution: definition of rules for choosing a representative sample 

of data (stability hypotheses + feedback from the tests performed).



L. Nana 19/11/2019 37

Master of Computer Sciences 19/11/2019

Modeling, simulation, testing and verification of 
plan interpretation algorithms

● Goal: "more rigorous" approach than the previous one.
● Approach:

– Modeling of plan and interpretation algorithms.
– Definition of a representative sample of the test data.
– Simulation, test and verification of operational semantics.
– Correction of possible errors and code regeneration from validated 

models.

● Formalism used: colored Petri nets.
● Reasons: graphic nature, simple representation of the 

concepts of algorithmic and programming, potential for 
property verification, availability of tools.

● Environment: CPN Tools  (Ex - Design / CPN).



L. Nana 19/11/2019 38

Master of Computer Sciences 19/11/2019

Modeling, simulation, testing and verification of 
plan interpretation algorithms (cont’d)

● Modeling of algorithms: 
– Modular approach: 1 subnet per algorithm; subnets communication 

through merged places.
– Variables : creation of a colored token by instance, life cycle and 

range of the token reflecting those of the variable, access to input 
variables by bidirectional arcs contrary to the output variables.

– Introduction of runtime nodes with the run state of the node (ready to 
run, running, executed).

● Verification:
– Principle :

– Difficulties in implementation: Translation of operational semantics 
into CPNML, taking into account the structure of the reachability 
graph, extraction of essential information.

CPN Tools
Operational
Semantics

Verification

Reachability
graph

Interpreter PN

Plan

Verification
Result



L. Nana 19/11/2019 39

Master of Computer Sciences 19/11/2019

Securing changes to plans that are 
running

● Aim: avoid dangerous modifications.
● Taking into account the semantics in the 

modification of the plan during its execution.
● Examples of litigious cases:

– Inserting a primitive after an action or primitive that is 
running.

– Deleting an active primitive.
● Specification of dynamic semantic rules based on 

the investigation of problematic cases.
● Implementation of the controller: creation of a 

separate window for the modification of the plan, 
need for a validation protocol.


