Master of Computer Sciences

19/11/2019

-

o

L. Nana

Dependability of robotic applications

b

u

L. Nana

19/11/2019

Master of Computer Sciences 19/11/2019

/ Plan \
® Brief overview of dependability

® Error prevention

® Fault tolerance

® Software fault tolerance

® Case study with PILOT and 1ts
environment

N o

L. Nana 19/11/2019 2

Master of Computer Sciences 19/11/2019

Dependability

® Property that allows users of a system to place
justified trust in the service 1t delivers.

® 2 main approaches :

— Error prevention:
e Traditional approach.
e Goal : Spread the faults before regular use of the system.
=> other name : fault intolerance.
e Based on fest and formal verification methods.

— Fault tolerance:

e Ability of a system to deliver a correct service even in the
presence of faults.

e Relies on redundancy.

L. Nana 19/11/2019

Master of Computer Sciences 19/11/2019

/ Basic definitions

® Service delivered by the system: behavior of the
system as perceived by its user(s).

® User : another system (human or physical) that
interacts with the system.

® [ailure : the service delivered no longer fulfills
the function (s) of the system.

® Lrror : Part of the system state that 1s likely to
cause a failure.

® [ault : cause assumed or adjudged of an error.
® Recursive causality relationship:

\. = Failure — fault — error — failure — ...

a

o

L. Nana 19/11/2019

Master of Computer Sciences 19/11/2019

Classes of faults

® Classification useful to avoid mistakes and to
prevent their possibly disastrous consequences on
the functioning of the system.

® Three main classification criteria:

— Nature :
e Accidental.
e Intentional.
— Origin:
e Human.
e Physical phenomenon.
e Faults internal to the system,

e External faults resulting from the interaction between the
system and its environment.

— Temporal persistence:
e Permanent faults.

e Temporary faults.
L. Nana 19/11/2019

Master of Computer Sciences 19/11/2019

Classes of failures

® A system does not always fail in the same way.

® Three main criteria of classification :

— Domain:

@ Value failure : the value of the service delivered does not
conform to 1ts specification.

e Temporal failure : service delivery times are not compliant
with the specification (early or late failure).

— Users perception:

e Coherent failures.

e Inconsistent failures, also called Byzantine failures.
— Consequences on environment:

e Minor or benign failures.
e Catastrophic failures.

L. Nana 19/11/2019

Master of Computer Sciences 19/11/2019

Formal verification

® 2 main approaches: Model-checking and
demonstration.

® Model-checking: fully automated, 2 sub
approaches :

— Synchronous:

e Characterized by the fact that it considers cyclic systems,
whose overall behavior, by synchronous composition, can
involve a set of events (qualified as simultaneous) on the
resulting transition.

e Widely used for designing reactive systems.

e Has given rise to many complete programming environments
including some dedicated to control-command
(STATECHARTS, SYNCCHARTS, GRAFCET, ...), or
mission programming (ORCCAD).

— Asynchronous: Petri nets, etc.

® Demonstration: tools of proof (PVS, COQ, ...).

19/11/2019

L. Nana

Master of Computer Sciences 19/11/2019

Test

® Purpose: To minimize the chances of failure
appearing when using the software.

® 2 approaches :

— Static test or control : one seeks 1n a static way (without
execution of code) simple and frequent faults.

— Dynamic test:
e Code executed.

e Definition of test data, that 1s to say inputs that will be
provided to the software during its execution.

® Test Set or Test Data Set: A set of test data produced for
testing.

e Exhaustive test impossible => need to define a test set
constituting a representative sample of all the possible entries.

L. Nana 19/11/2019

Master of Computer Sci 19/11/2019

/ Causes of software errors

® The software development process has an
impact on the types of potential errors.

® Poor knowledge of the programming
language or inexperience of the
programmer.

® Distortion or loss of information during the

development process.

® Bad specification or misunderstanding of
specifications, etc.

N

n

o

L. Nana 19/11/2019

9

Master of Computer Sciences 19/11/2019

® 6 classes of errors:

Classification of software errors

Calculation errors : for example, write "x: = x + 2" instead of "x: =
y +2".

Logic errors : bad predicate expression. For example, by writing
"1f (a <b) then" instead of "if (a>b) then".

1/ 0O errors : bad formatting, bad access to communication
medium, etc.

Interface errors : bad communication between the software's
internal components (e.g. call of the P1 procedure instead'of P2,
incorrect parameter passing, etc.).

Data processing errors : bad access or mishandling of data (misuse
of pointers, undefined variables, overflow of a table index, etc.).

Data definition errors : erroneous type in the declaration of a
variable (for example, a variable was declared as integer when it
should have been declared as real), error in accuracy (for example,
a value 1s 1n simple precision instead of double).

L. Nana

19/11/2019 10

Master of Computer Sciences 19/11/2019

ﬂ)lassification of test techniques

® According to the criterion adopted for the choice
of representative test data :

— Functional techniques or black boxes: production of
test data based on the specification of the software
without worrying about the internal structure of the
software.

— Structural techniques or white boxes : Test data are
produced by analyzing the source code.
® Depending on the execution or not of the binary
code:

— Dynamic test techniques : The binary code is executed
and the actual behavior of the program 1s examined.

— Static testing techniques: The passive form of the
program (source code) 1s examined.

L. Nana 19/11/2019 11

Master of Computer Sciences 19/11/2019

/ Notes on the test \

® The testing process often uses a combination of
functional, structural, dynamic and static
techniques.

® Each correction 1nevitably leads to a risk of new
errors appearing with a frequency often greater
than during the previous development of the
software.

=> Need to re-run on the tested program, a
significant part of the old TD (non-regression

\technique). /

L. Nana 19/11/2019 12

Master of Computer Sciences 19/11/2019

/ Redundancy \

® Presence 1n the system of elements fulfilling the
same functions as all (total redundancy) or part
(partial redundancy) of the system.

® Primary element : part of the system whose errors
are tolerated by the redundant part.

® Implementation: Duplication in terms of
specifications or implementation of elements
ensuring degraded specifications.

® 2 types of redundancies: static, dynamic.

N o

L. Nana 19/11/2019 13

Master of Computer Sciences 19/11/2019

Static redundancy

® The redundant element participates 1n performing
the task before an error 1s detected and remains
active.

® Typical example: triple modular redundancy
Input : Output

— Tolerance of errors of one among the 3 components.

— Implicit assumption that the probability that more than
one element produces the same erroneous result 1s
negligible.

® Generalization to N elements (odd N): N modular

redundancy.
® Another name: masking redundancy.

L. Nana 19/11/2019 14

Master of Computer Sciences 19/11/2019

/ Dynamic redundancy \

® The redundant element only takes part in carrying
out the task after detection and reaction to an error.

® 2 forms: active, passive.

® Active redundancy:
— The redundant element 1s permanently active.

— It rece1ves the same information as the primary element
and processes it in parallel.

— Only the primary element outputs the results.

® Passive redundancy:

— The redundant element remains passive in the absence
of error.

— In case of error, uses information stored before the
detection of error to take over from the primary element

L. Nana 19/11/2019 15

Master of Computer Sciences 19/11/2019

/ The different phases of fault\

tolerance

® 4 main functions:
— Error detection.

— Damage assessment.
— Error handling.
— Fault treatment.

® Error detection 1s always the first function
performed.

® Order of intervention of the other steps not

predetermined and possibility of strong interaction
\between them. /

L. Nana 19/11/2019 16

Master of Computer Sciences 19/11/2019

Error detection

® Based on hardware or software tests mechanisms dedicated
to the monitoring of the state of the system.

® Finished by 1ssuing an error signal (s).

® Idecal criteria for controls:
— Be based solely on the specification of the service delivered.

— Check the absolute conformity of the behavior of the system to its
specification.

— Be independent of the controlled system itself.

® Ideal criteria difficult to meet in practice:

— Specification very often expressed in terms of information external
to the computer system not taken into account by the computer
verification.

— Cost and performance constraints unacceptable in most cases, for
runtime checks.

— The independence between the system and its control can not be
absolute.

=> [, 1mitation to a standard lower than the 1deal.

L. Nana 19/11/2019 17

L. Nana

Master of Computer Sciences 19/11/2019

Damage assessment
® Purpose: Identification of failed components.

® Justifications:

— Error detection signal very often insufficient to identify all
the failed components.

— Possible propagation of invalid information between the
occurrence of the fault and its erroneous consequences.

® Two approaches:

— Static approach:
e Estimate a priori of the consequences of any error.

e In case of error, all the components involved in the estimation
of 1ts consequences are supposed to be reached.

e Difficultto adopt in complex systems.

— Dynamic approach:

e Exploring the state of the system after error detection to
estimate the extent of damage.

® Need to memorize the information on the different transfers
and to control these transfers.

19/11/2019

18

L. Nana

Master of Computer Sciences 19/11/2019

Error handling

® Aim: to eliminate errors, 1f possible before a failure occurs.

® 2 forms: error compensation and error recovery.

® Error Compensation: The faulty state has enough
redundancy to allow the delivery of a non-faulty service
from the erroneous internal state.

® Error recovery:

— Substitution of an error-free state to the wrong state.
— 2 forms of substitutions: recovery and continuation.
— Backward error recovery :

e Data storage (recovery data) in the course of evolution.
e® Recovery points: Data storage points.

e System returned to a healthy state that occurred before the occurrence
of error (restoring recovery points).

— Forward error recovery :

e Apply fixes to the current state to transform it into a healthy state
from which the system can operate.

19/11/2019

19

L. Nana

Master of Computer Sciences 19/11/2019

Comparison of error processing

mechanisms
® Temporal and financial over-costs :

— Error recovery: higher cost during the occurrence of
error than in 1ts absence.

— Error compensation: shorter and constant duration, but
more expensive financially.

® Backward / Forward error recovery:

— Backward ER: no assumption on the nature of the fault
(except no compromising of the recovery mechanism)

=> Evaluation of the damage not necessary.

= Recovery possible after any type of error, even unforeseen errors
in the design of the system.

— Forward ER: greater interest when restoration to an
earlier state 1s not possible (e.g. printing).

19/11/2019

20

Master of Computer Sciences 19/11/2019

Fault treatment

® Error handling 1s not always enough to eliminate the error
or guarantee that it will not happen again.

® Goal: To prevent one or more faults from being activated
again.

® First step: diagnosis of fault (locate the causes of errors
and their nature).

® Repair strategies:

— Replacement: relies on the presence of redundant components in
reserve, initially inactive, to directly replace the defective
components.

— Reconfiguration:

e Distribution of faulty component responsibilities between the healthy
system components that are running.

e Can be static or dynamic.

® Consequence of fault treatment: Reduction of the potential
of available redundancy

=> Need for manual intervention to maintain the potential.

L. Nana 19/11/2019 21

Master of Computer Sciences 19/11/2019

Influence of the distribution
® Distributed system: set of processing nodes or

processors (with embedded memory)
interconnected by a communication network and
communicating only by messages.

® The distribution of the processes and data on
different processors makes it possible to structure

and manage the redundancy.
® Specific aspects for fault tolerance:
— Error and faults mainly handled by message.

— Need to maintain the coherence of the overall state of
the system, although not directly observable nor
manipulable, despite the concomitance of executions.

® 2 approaches: backward recovery of distributed
\operations on distributed data, process replicatiorj

L. Nana 19/11/2019 22

Master of Computer Sciences 19/11/2019

Backward recovery of distributed
operations

® Purpose: To move distributed data from one consistent
state to another consistent state.

Risk of cascade restoration, called “domino effect”.

Establishment of coherent recovery points to avoid the
domino effect.

® Letpl, p2, ..., pn be a set of processes that have set
recovery points at times ¢/, ¢2, ..., tn. The set of recovery
points is consistent at a later time 1f:
— Between t; and t;, p; and p; have not interacted.

— Between t; and t, p; has not interacted with any process that does
not belong to the considered set.

® A consistent set of recovery points 1s called a recovery line,

L. Nana 19/11/2019 23

Master of Computer Sciences 19/11/2019

Process replication

® Data recovery approach 1s not-adapted in the event of a
processor failure (access to recovery data).

® First possible solution:
— Stable storage server.
— Problem: The server can be a bottleneck and therefore limit the
benefits of the distribution.
® Another approach :
— Creating multiple copies of processes on different processors.

— Different replication approaches: active, passive, semi-active, with
respectively the same operating principle as masking redundancy,
passive dynamic redundancy and active dynamic redundancy.

— Fault treatment required, in case of failure, to retrieve the initial
level of redundancy.

L. Nana 19/11/2019 24

Master of Computer Sciences 19/11/2019

/ Software fault tolerance \

® Main mechanisms:

— Exceptions mechanisms.

— Functional diversification.

® Functional diversification:
— Recovery Blocks.

— N-versions programming.

\ — N-self-testing programming. /

L. Nana 19/11/2019 25

Master of Computer Sciences 19/11/2019

/ Exceptions mechanisms \

® Forward technique: application of corrections to
the erroneous state.

® Lfficient for the treatment of certain failures.

® [.1mitations :

— Makes programs more difficult to maintain in
languages such as C because of mixing of exception
processing code and normal code.

— Any type of probable error must be anticipated and
appropriate exception treatments must be provided.

— Useless for unanticipated faults like design faults.

L. Nana 19/11/2019 26

Master of Computer Sciences 19/11/2019

/ Recovery blocks

® Do not need to foresee all possible faults and
associated recoveries.

® Shape :

Ensure <validity test>

By <primary alternative>
Else by <second alternative>

Else by <n™" alternative>
Else error;

® Validity test : condition (e. g. predicate on system
variables) that must be satisfied by the system

\after execution of the recovery block. J

L. Nana 19/11/2019 27

Master of Computer Sciences 19/11/2019

Recovery blocks : case of interactive
processes

® Take the domino effect into account.

® Different propositions, €. g.

— For a set of cooperating processes, all of these processes enter into
a conversation before any interaction.

— Each process saves its state before entering a conversation.

— One process can interact with another only if it is part of the same
conversation.

— Processes only leave the conversation after having each passed
their validity test.

— All processes restore the saved state if one of the processes in the
conversation has not passed its acceptance test.

® Approach similar to transactional processes in database
systems.

L. Nana 19/11/2019 28

Master of Computer Sciences 19/11/2019

/ N-versions programming \

® N-modular redundancy.

® Concurrent execution of N versions of a program
(N> 2) of independent but functionally equivalent
designs.

® Results compared based on a majority vote that
eliminates erroneous results.

® A specific program called supervisor controls the
N versions and 1s responsible for:
— The call of each version,
— Waiting for the outcome of all versions,

\ — The judgment of the N results. J

L. Nana 19/11/2019 29

Master of Computer Sciences 19/11/2019

/ N-self-testing programming \

® Sclf-testing component : addition of error
detection mechanisms in the component to its
functional processing capabilities.

® Parallel execution of at least two self-testing
software components.

® Active dynamic redundancy case:

— Only one component outputs the result.

— In case of failure, another component that has not
failed, 1s selected for the output of the result.

o u

L. Nana 19/11/2019 30

Master of Computer Sciences 19/11/2019

-

Case study with PILOT \

® Advantages and drawbacks at the beginning
® Propositions for reinforcing dependability

o o

L. Nana 19/11/2019 31

Master of Computer Sciences 19/11/2019

Advantages and drawbacks
® Advantages of PILOT for dependability:

— Language level: operational semantics available,
preconditions and supervising rules, possibility to
modify missions during execution.

— Control system level : availability of interpretation
algorithms, of Finite State Machines for the modules.
® Drawbacks :

— « Lack of precisions » regarding the context of use of
continuous actions.

— Risk of incorrect plans execution.
— Interpretation algorithms and FSM not rigorously tested

\ nor formally checked. /

L. Nana 19/11/2019 32

Master of Computer Sciences 19/11/2019

/ Improvements \

® Precision of the context of use of
continuous actions and of their termination.

® Syntax oriented edition.
® Static and dynamic testing of the interpreter.

® Modeling, simulation, testing and
verification of interpretation algorithms.

® Sccurity of plans modifications during
execution.

\)

L. Nana 19/11/2019 33

L. Nana

Master of Computer Sciences 19/11/2019

Context of use of continuous actions

® Illustration of the problem:

/
B > /»«
> <7
> | | >

® Solution proposed and implemented:
— Notions of normal sequence and specific sequence.
— Context of use: parallelism, preemption.

— At least one normal sequence 1n a parallel or
preemption structure.

— For preemption (parallelism), stop continuous actions
when one (all) normal branch (es) end.

19/11/2019

34

Master of Computer Sciences 19/11/2019

Syntax-driven edition

® Principle: ensure syntactic validity after each operation.

Definition of default blocks used during insert operations.
® Operation:

— Start of construction with an empty sequence.

— Effective consideration of an operation only if the resulting plan is
syntactically correct.

® Compliance verification of the approach

Validation
ResultingPlan PlanBeforelnsertion
Insertion '/\i Selection
ElementSelected

ElementTolnsert

® Properties checked:

— Could an insertion lead to a syntactically incorrect plan?
— Is there a syntactically correct plan that can not be constructed?

— Environment used: SWI-Prolog.

L. Nana 19/11/2019

L. Nana

Master of Computer Sciences 19/11/2019

Interpreter test

® Speccificity: reactive system.

@ Static test:
— Code reading.

— Errors detected (management of interruptions, management of the
termination of continuous actions, inexperience errors, etc.).
® Dynamic test:

— Incremental approach (empty sequence, unique primitives,
combinations in length, width and depth of primitives).

— Problems: choice of the appropriate length, width and depth;
relevant combinations.

— Solution: definition of rules for choosing a representative sample

of data (stability hypotheses + feedback from the tests performed).

19/11/2019

36

Master of Computer Sciences 19/11/2019

Modeling, simulation, testing and verification of

plan interpretation algorithms
® Goal: "more rigorous" approach than the previous one.

® Approach:
— Modeling of plan and interpretation algorithms.
— Definition of a representative sample of the test data.
— Simulation, test and verification of operational semantics.

— Correction of possible errors and code regeneration from validated
models.

® Formalism used: colored Petri nets.
® Recasons: graphic nature, simple representation of the

concepts of algorithmic and programming, potential for
property verification, availability of tools.

® Environment: CPN Tools (Ex - Design / CPN).

L. Nana 19/11/2019 37

Master of Computer Sciences 19/11/2019

Modeling, simulation, testing and verification of
plan interpretation algorithms (cont'd)
® Modeling of algorithms:

— Modular approach: 1 subnet per algorithm; subnets communication
through merged places.

— Variables : creation of a colored token by instance, /ife cycle and
range of the token reflecting those of the variable, access to input
variables by bidirectional arcs contrary to the output variables.

— Introduction of runtime nodes with the run state of the node (ready to
run, running, executed).
® Verification:
— Principle:

Interpreter PN NN Operational Verification
Plan — Verification

— Difficulties in implementation: Translation of operational semantics
into CPNML, taking into account the structure of the reachability
graph, extraction of essential information.

L. Nana 19/11/2019 38

Master of Computer Sciences 19/11/2019

Securing changes to plans that are\

running
® Aim: avoid dangerous modifications.

® Taking into account the semantics 1n the
modification of the plan during 1ts execution.

® Examples of litigious cases:
— Inserting a primitive after an action or primitive that is
running.
— Deleting an active primitive.
® Specification of dynamic semantic rules based on
the investigation of problematic cases.

® Implementation of the controller: creation of a

separate window for the modification of the plan,
\ need for a validation protocol. /

L. Nana 19/11/2019 39

