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Linear regression Analysis of variance and ANOVA

Course objectives

Objs :
1 Regress (linearly)

2 Master the principles of ANOVA
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Solidarity teachers
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Regression models

Regression consists in building a model which expresses the statistical
dependence between two variables : an explanatory variable X and an
explained variable Y . For each value of X we obtain a statistical
distribution of Y and the average of these distributions varies
systematically along X.
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Example

We want to test the dependence between the mid-year evaluation of
the performance of a set of companies and the evaluation of this same
performance at the end of the year. In this case, we can obtain a curve
such as :
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Evaluation à mi-année
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 d'année
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Linear regression

We try via this approach to model the dependence between two
variables by a linear equation. The standard equation of simple linear
regression is therefore the following :

Yi = β0 + β1Xi + εi

or
• Yi is the answer to the ith test,
• β0 and β1 are the model parameters,
• Xi is a constant (the value of the explanatory variable for the

edition in question) and
• εi an error term reduced to a normal variable with zero

expectation and the same variance σ2.

We assume that εi and εj are independent for all i and j.
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Some explanations

The regression is called simple because a single explanatory variable,
linear in parameters and linear in variable.

Linear regression concerns variables X and Y quantitative i.e. numeric.

In a linear regression model, the values of X are known and
controlled.
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Example

We are working on real estate price data (Parisian apartments)
described by the estimates and the real selling price
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Example (II)
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Regression approach

Youpi, c’est parti !

Analyse exploratoire des 
données

Calcul modèle(s) régression

Révision du modèle

Identifier le modèle le plus 
adapté

Inférences sur la base du 
modèle

Validation des modèles

Chouette, on s’arrête !
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Least squares line

Let di be the vertical distances between the points and the line. The
sum of the squares of this line is the indicator of good approximation,
that is to say

D =
∑

n

d2
i

If Ŷi is the height of the line at point Xi, then di =| Yi − Ŷi | and

D =
∑

n

(Yi − Ŷi)
2

We will simply look for the line Y = b0 + b1X which minimizes this
sum.



Linear regression Analysis of variance and ANOVA

Calculation of the coefficients

The coefficients b0 and b1 which minimize the distance D are as
follows :

b1 =

∑
(Xi − X)(Yi − Y)∑

(Xi − X)2
=

∑
XiYi − nXY∑
X2

i − nX2

and
b0 =

1
n

(ΣYi − b1ΣXi) = Y − b1X

The coefficient b1 is linked to the correlation coefficient by

r =
sx

sy
b1 =

σ̂x

σ̂y
b1

r =
1
n

∑n
i=1(xi − x)(yi − y)

σxσy
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Another example (II)

From these values we get

b1 = 3.57

and
b0 = 62.37

We can therefore estimate that the number of working hours increases
by 3.57 hours per unit of output. This makes it possible to estimate
the number of hours for a given batch size, thanks to the estimate
function :

Ŷ = 62.37 + 3.57X

For a set of 65 sink drainers (pink), we therefore expect
62.37 + 3.57× 65 = 294 hours of work.
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Residues

The residues are defined as : ?

ei = Yi − Ŷi

By construction, the sum of the residuals is zero, and the sum of its
squares is minimal.

Do not confuse the residuals ei = Yi − Ŷi with the errors
εi = Yi − E(Yi).
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Confidence intervals of the coefficients

b0 and b1 are estimators of β0 and β1. We can write :

b1 =
∑

kiYi

with

ki =
Xi − X∑
(Xi − X)2

We then show that E(b1) = β1 and σ2(b1) = σ2 1∑
(Xi−X)2 .

Two variables being fixed (β0 and β1), we lose two degrees of
freedom and we have to approximate σ2 by

s2 = σ̂2 = MSE =
SSE

n− 2
=

∑
(Yi − Ŷi)

2

n− 2
=

∑
e2

i

n− 2

SSE for Sum of Square Errors.
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Confidence intervals of the coefficients

In the case where Yi are normal distributions, b1 follows a normal
distribution and b1−β1

σ̂(b1)
a Student law centered at n− 2 degrees of

freedom. We can therefore estimate - as we did previously for the
parameter estimates - the confidence interval of the coefficient b1 by :

b1 ± tn−2
α σ̂(b1)
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Return to the example

In the case of our example, we calculate σ̂(b1) = 0.34 and we have
tn−2
α = t23

0.05 = 2.069. We can thus estimate that the coefficient is
framed by

2.85 ≤ β1 ≤ 4.29

We will add between 2.85 and 4.29 hours per unit of unblocking thing.
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Estimate of the mean value E(Yh)

We try to estimate the distribution Ŷh of the successive estimators of Y
for a fixed value of Xh. The following results are obtained :

E(Ŷh) = E(Yh)

σ2(Ŷh) = σ2[
1
n

+
(Xh − X)2∑

(Xi − X)2
]

We then replace σ2 by its estimate MSE = s2 = σ̂2.
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Estimate of the mean value E(Yh)

The further we are from the average, the greater the differences
between successive estimates.

XX1 X2

Y

X

Y

Droite de régression échantillon 2

Droite de régression échantillon 1
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Prediction of an interval

Recall that : b1 = 3.57 and b0 = 62.37 and we have σ2 = 2.384. So,
for 65 stuffers :

Ŷh = 62.37 + 3.57(65) = 294.4

σ2(Ŷh) = (σ̂)2(
1
25

+
(65− 70)2

19.800
) = 98.37

σ = 9.918

For a confidence interval of 0.90, we will have :

277.4 ≤ E(Yh) ≤ 311.4

For 100 pieces, we would have :

359.52 ≤ E(Yh) ≤ 479.42
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Analysis of variance applied to regression

The following quantities are defined :

SSTO =
∑

(Yi − Y)2

SSE =
∑

(Yi − Ŷi)
2

SSR =
∑

(Ŷi − Y)2

with SSTO (or SSY) : total sum of squares, SSE = error sum of
squares, SSR : regression sum of squares.
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Analysis of variance applied to regression (II)
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Relations between error sums

We have :
Yi − Y = Ŷi − Y + Yi − Ŷi

hence : ∑
(Yi − Y)2 =

∑
(Ŷi − Y)2 +

∑
(Yi − Ŷi)

2

that is
SSTO = SSR + SSE
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Degrees of freedom

SSTO has n− 1 degrees of freedom : the Yi − Y have a zero sum.

SSE has n− 2 degrees of freedom : the parameters β0 and β1 are
estimated and block two degrees of freedom.

SSR has 1 degree of freedom : the Ŷi are computed from the
regression line, which has two degrees of freedom linked to the
coefficients. We lose one for zero sum (same as SSTO).
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Fisher’s test for regression

We will test the hypothesis :

H0 : β1 = 0

For this, we see that :
E(MSE) = σ2

and
E(MSR) = σ2 + β2

1

∑
(Xi − X)2

If β1 = 0, we see that MSE and MSR must be of the same order of
magnitude.
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Fisher-Snedecor Law

If X and Y are respectively laws of type χ2
n and χ2

p, then we can define
the following law :

F(n; p) :
X/n
Y/p

This law serves as a reference for variance analyzes.
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Which test for regression?

If H0 is respected, we must find with F a Fisher distribution, so we
will consider the value of the estimate of the statistic and analyze its
positioning with respect to the threshold value (as usual ... ). If the
statistic is less than the threshold value F(1− α; 1, n− 2), then we
cannot reject H0.

In the case of the example, we get MSR = 252, 378 and
MSE = 2, 384, so F = 105 that we must compare to the threshold
value for n− 2 = 23, that is to say 4, 29. It seems that we can’t keep
H0, so we can’t keep the hypothesis β1 = 0, so there is a linear
dependency relation between X and Y.
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And in R ...

>	summary(model)	
	
Call:	
lm(formula	=	V2	~	V1)	
	
Residuals:	
				Min						1Q		Median						3Q					Max		
-83.876	-34.088		-5.982		38.826	103.528		
	
Coefficients:	
												Estimate	Std.	Error	t	value	Pr(>|t|)					
(Intercept)			62.366					26.177			2.382			0.0259	*			
V1													3.570						0.347		10.290	4.45e-10	***	
---	
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	’	1	
	
Residual	standard	error:	48.82	on	23	degrees	of	freedom	
Multiple	R-squared:		0.8215,	Adjusted	R-squared:		0.8138		
F-statistic:	105.9	on	1	and	23	DF,		p-value:	4.449e-10	
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Coefficient of determination

To know what is the "impact" of the explanatory variable X on the
determination of Y , we can come back to the relationship between
SSR and SSTO. The closer this ratio is to 1, the more Y will be
"governed" by the values of X. We therefore define :

R2 =
SSR

SSTO
= 1− SSE

SSTO

R2 is between 0 and 1.
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Coefficient of determination (II)

Warning !
• a high R coefficient does not mean that we can predict correctly
• a high R coefficient does not necessarily indicate that the

regression line is optimal
• a coefficient R close to 0 does not mean that X and Y are

independent

We have the following relation :

r = +−
√

R2
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Limits of linear regression

• the regression function is not linear
• error terms do not have constant variance
• error terms are not independent
• the models are suitable but there are outliers
• the error terms are not distributed according to a normal

distribution
• explanatory variables are missing
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Analysis of extreme individuals

• Linear regression is very sensitive to extreme individuals, which
can strongly influence the coefficients.

• We can study extreme individuals and their influence by the
jackknife technique (differential regression analysis), leverage,
dfitts and distance analyzes. Cook.

• The objective is to decide if these individuals should be finally
discarded ("abnormal", "outside the model"), or on the contrary
if they are representative.
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Leverage

• The leverage formula is :

hi =
1
n

+
(Xi − X)2

(n− 1)sx
2

where hi represents the influence of the individual i, 1
n ≤ hi ≤ 2.

• We generally avoid keeping the individuals for whom hi ≥ 4
n .
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Dfitts

• We observe the effect of the absence of the individual on the
result of the regression, by evaluating :

dfitts =
ei
√

hi

MSEsans i(1− hi)

• We generally avoid keeping individuals for which dfitts has an

absolute value greater than 1 (small samples) or 2
√

2
n (other

sample sizes).
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Cook’s distance

• The effect of individual i can also be evaluated by :

Dcook i =
e2

i stdhi

2(1− hi)

• Dcook i must not exceed a tabulated value Dcook ref calculated
according to the quantile of a Fisher law.
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Analysis of residuals

• Reminder : the residuals must be normal distributions of the
same variance and independent.

• Verification is most often graphical. It is done on the pairs
(ei std, Ŷ), with :

ei std =
ei

sei

=
ei√

MSE(1− hi)
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Linearization transformations

Function Transformation Linear form
y = αxβ y′ = Logy y′ = Log + βx′

x′ = Logx
y = αeβx y′ = Logy y′ = Logα+ βx

y = α+ βLogx x′ = Logx y = α+ βx′

y = x
αx−β y′ = 1/x y′ = α− βx′

x′ = 1/x
y = eα+βx

1+eα+βx y′ = Log( y
1−y) y′ = α+ βx
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Example

"x" "y"
"1" 1 15
"2" 2 10
"3" 3 9
"4" 4 7
"5" 5 6
"6" 6 5.5
"7" 7 4
"8" 8 4
"9" 9 2
"10" 10 3
"11" 11 2
"12" 12 2
"13" 13 1
"14" 14 1.5
"15" 15 1
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Example

lm(formula = y ~ x) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.0524 -1.0595 -0.2381  0.3190  4.4333  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  11.3810     0.9238  12.320 1.52e-08 *** 
x            -0.8143     0.1016  -8.014 2.19e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.7 on 13 degrees of freedom 
Multiple R-squared: 0.8317, Adjusted R-squared: 0.8187  
F-statistic: 64.23 on 1 and 13 DF,  p-value: 2.193e-06 
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Example
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Example

lm(formula = log(y) ~ x) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.38988 -0.06115  0.00982  0.13586  0.24275  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.73959    0.10151   26.99 8.42e-13 *** 
x           -0.18406    0.01116  -16.49 4.28e-10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.1868 on 13 degrees of freedom 
Multiple R-squared: 0.9544, Adjusted R-squared: 0.9508  
F-statistic: 271.8 on 1 and 13 DF,  p-value: 4.282e-10  
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Example
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Variance related transformations

Distribution Variance f (µ) Transformation Resulting Variance
Fish µ

√
(y) 0.25

Binomial µ(1−µ)
n Arc sin

√
(y) 0.25

n
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Example

"x" "y"
"1" 10 1
"2" 15 2
"3" 20 3
"4" 25 2
"5" 40 3
"6" 40 5
"7" 50 6
"8" 60 4
"9" 65 5
"10" 70 5
"11" 70 8
"12" 80 7
"13" 90 10
"14" 100 6
"15" 100 12
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Example

lm(formula = y ~ x) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.1342 -0.9904 -0.2828  1.1639  2.8658  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.41045    0.90598   0.453    0.658     
x            0.08724    0.01442   6.048 4.11e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.625 on 13 degrees of freedom 
Multiple R-squared: 0.7378, Adjusted R-squared: 0.7176  
F-statistic: 36.58 on 1 and 13 DF,  p-value: 4.113e-05  
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Example
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Example

Call: 
lm(formula = z ~ t) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-0.032863 -0.023237 -0.006238  0.022138  0.043138  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.08936    0.01067   8.378 1.34e-06 *** 
t            0.34997    0.28112   1.245    0.235     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.02699 on 13 degrees of freedom 
Multiple R-squared: 0.1065, Adjusted R-squared: 0.03779  
F-statistic:  1.55 on 1 and 13 DF,  p-value: 0.2351  
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Example
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Analysis of variance for ... comparison of means

We want to know what is the influence of factors on the behavior of
populations. These factors or explanatory variables are qualitative
variables, the observed or explained variable is numeric. The
modalities of the different factors are generally called levels.

One- or two-way analysis of variance (ANOVA).
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ANOVA and regression

Y

X50 70 100
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70
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ANOVA model

Yij = β0 + β1Xij,1 + β2Xij,2 + ..+ βnXij,n + εij

with Xijk = 1 if factor k and 0 otherwise.
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Formalization of the problem

We have k samples of sizes n1, n2, .., nk corresponding to the different
modalities of the factor A1,A2, ..,Ak.

Factor A1 A2 .. .. Ak

y1
1 y1

2 .. .. y1
k

y2
1 y2

2 .. .. y2
k

.. .. .. .. ..

yn1
1 yn2

2 .. .. ynk
k

Average y1 y2 .. .. yk

We want to know if H0 : m1 = m2 = ... = mk

yj
i = mi + εj

i = µ+ αi + εj
i

αi effect of the level i of the factor and εj
i of distribution N(0, σ).
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Variance decomposition

Y =
1
n

k∑
i=1

ni∑
j=1

Y j
i

with Y j
i − Y = Y j

i − Y i + Y i − Y , we get :

∑
i

∑
j

(Y j
i − Y)2 =

∑
i

∑
j

(Y j
i − Yi)

2 +
∑

i

ni(Yi − Y)2

that is
SSY(SSTO) = SSE + SSR
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Variance comparison

By writing SSR = 1
n

∑k
i=1 niSSRi, we get that :

nSSR
σ2 =

k∑
i=1

niSSRi

σ2

Knowing that niSSRi
σ2 is a variable of type χ2

ni−1, the variable nSSR
σ2 is it

of type χ2
n−k.

Likewise, the variable nSSE
σ2 is a variable of type χ2

k−1.
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Fisher-Snedecor law for comparison

If the means were identical (H0 : the factor levels have no influence),
we should have an identical influence between the intragroup effects
(SSR) and the intergroup effects (SSE). This should therefore result in
a ratio of 1 between the two quantities, namely :

MSE
MSR

=
SSE/k − 1
SSR/n− k

= F(k − 1; n− k) ' 1

The F law is a Fisher-Snedecor law (at k − 1 and n− k degrees of
freedom). If the value obtained for F is too extreme, we will refute the
hypothesis of identical means.
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Analysis of variance : example

We are trying to find out if there are differences between the housing
tax rates depending on the region. We have the following table :

area number average variance
center 13 4.38 3.63

is 10 17.66 4.38
idf 26 11.76 15.04

north 9 25.95 50.40
west 14 18.89 9.59

southeast 18 19.76 8.63
southwest 10 20.51 20.69
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ANOVA : example (II)

We calculate :
• the inter-group variance SSE = 1706
• the intra-group variance SSR = 1320

With k − 1 = 6 and n− k = 93, we have df = 99 and F = 20.03

Which excludes equality of averages
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ANOVA : example (II)

We calculate :
• the inter-group variance SSE = 1706
• the intra-group variance SSR = 1320

With k − 1 = 6 and n− k = 93, we have df = 99 and F = 20.03

Which excludes equality of averages
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Contrasts

We can still want to know if within the means, we have identical pairs
(mi = mj). For this, we rely on Scheffé’s formula which indicates that

mi − mj − SSYσ̂

√
1
ni

+
1
nj
≤ xi − xj ≤ mi − mj + SSYσ̂

√
1
ni

+
1
nj

takes place with a probability

P(Fk−1;n−k ≤
SSY2

k − 1
) = 1− α

We calculate S =
√

(k − 1)Fα(k − 1; nk) and if

| xi − xj |> Sσ
√

1
ni

+ 1
nj

then the means mi and mj are different.


