
29/09/2016

Interaction and
Verification

A. Beugnard
C1

2021

Avancement 2 / 90

1 Introduction

2 Interface, interaction

3 Generality on software architecture

4 Models of interaction

5 Specification

Interaction : take a step back 3 / 90

▶ The notion of interaction
▶ The notion of interface
▶ A bit of architecture
▶ Interaction model
▶ Contract and interaction
▶ Interaction diagrams

Interactions? where? 4 / 90

▶ Between Human and Machine (HMI)
▶ Among machines (network, distributed systems)
▶ Among programs
▶ Among agents (software)
▶ Among humans

The central question 5 / 90

How to describe/specify an interaction?

With it, verifications can be made. . .

A problem well stated is on its way to solution
Bergson, XXth

Point of view 6 / 90

concurrency Many activities, reliable communication, a common
clock exists

distribution Slow communication, unreliable, no common clock,
global state to build

point of
view/aspect

optimistic pessimistic

concurrency speed (load-
balancing)

interleaving

distribution fault tolerance
(high disponibi-
lity)

faults

The core issue : interactions !

Agenda 7 / 90

▶ 2h of abstractions
▶ 2h of models
▶ 2h of diagrams

Sources 8 / 90

▶ See references
▶ Cours de Bernard Espinasse (Univ. Aix-Marseille) :

Communication et langages de communication dans les SMA
▶ Cours de Rachid Guerraoui (EPFL) : Distributed Algorithms

Avancement 9 / 90

1 Introduction

2 Interface, interaction

3 Generality on software architecture

4 Models of interaction

5 Specification

10 / 90

Background

Interaction : definition 11 / 90

The reciprocal action or influence that can be established bet-
ween two or more objects (or persons). An interaction is bro-
ken down into several sequences, exchanges and turns of
speech.

Wikitionnaire

System one

System two

Interaction : context 12 / 90

▶ At least 2 objects/actors/systems
▶ They exchange (information, material, energy, . . .)
Should the whole system be described? individual
objects/actors/systems?
▶ Interaction, first case
▶ Interface, second case

Local, global, context 13 / 90

An interaction describes exchanges among systems.
Systems offer interfaces.
Interfaces describes rules, assumptions, context (assumed,
legitimate) of interaction.

Choosing an interface (or interaction) description language,
means choosing rules, constraints, properties

14 / 90

Interface

Definitions 15 / 90

▶ What is an interface?
▶ What is a system?
▶ Why is it interesting

▶ Frequent
▶ Useful (abstract)
▶ Absent or ill defined, implies big issues during integration, test or

even in function

Examples 16 / 90

water/air ; cell ; cables ; chip ; API ; mechanic - exploded view ;
HMI

Famous issues 17 / 90

▶ A380 delay
▶ US/EU Satellite
▶ Coupling of 2 TGV trains

A380 delay 18 / 90

Due to the complexity of the wiring : 530km, 100000 cables and
40300 connectors.
Source : Cadalyst magazine article, What Grounded the Airbus
A380? 6 Décembre 2006 By : Kenneth Wong 1

Personal information, unofficial sources : the German and French
designers German and French designers were not using the
same version of the Katia software, which caused alignment
errors.

1. http:
//www.cadalyst.com/management/what-grounded-airbus-a380-5955

http://www.cadalyst.com/management/what-grounded-airbus-a380-5955
http://www.cadalyst.com/management/what-grounded-airbus-a380-5955

Interface 19 / 90

Point at the border between two elements, through which
exchanges and interactions take place
Examples
▶ Human - Human
▶ Human - Computer/System (HMI)
▶ System - System

Questions 20 / 90

▶ What purpose?
▶ Control a system
▶ Interact with a system (ask for a service)

▶ How is it described?
▶ A schema, a plan, an instruction manual, a contract, etc.

▶ How is it used?

Goal of an interface 21 / 90

▶ Ensuring coupling
▶ Ensuring interoperability
▶ Get both parties to agree

▶ Data type, unit, message order (protocol), intensity, etc.

Risk . . . 22 / 90

▶ Multiplying couplings
▶ Reducing couplings

▶ Mediator
▶ Pivot

Example :
N languages, need N(N-1) translations or 2(N-1) with a pivot?

23 / 90

Interface structure

Interface levels 24 / 90

Many points of view
▶ Physics/Chemistry
▶ Science of communication
▶ Electronics
▶ Computer science
Various description tools. . .

Physics/Chemistry 25 / 90

http://www.humans.be/pages/biomitochondrie.htm

1. Exchange of compounds

http://www.humans.be/pages/biomitochondrie.htm

Science of communication 26 / 90

http://www.matteo-ricci.org/Opera/m1_decalog.html

1. Physics (the medium : paper, air, electrons, etc.)
2. Orthographic (coding : ASCII, unicode, morse code, jpeg, etc.)
3. Lexicon (words : separators)
4. Grammar (sequencing rules)
5. Functional (meaning, usage, etc.)

http://www.matteo-ricci.org/Opera/m1_decalog.html

Electronics 27 / 90

http://eicom.ru/pdf/datasheet/ST_Microelectronics_PDFS/HCF40107B/HCF40107B.html

http://www.ti.com/lit/ds/symlink/sn74ls00.pdf

1. Physics (mechanics, pins, etc.)
2. Logic (signal names, direction)
3. Electrics (voltage/current control, levels/states, switching

speeds, hold times, etc.)
4. Protocol

http://eicom.ru/pdf/datasheet/ST_Microelectronics_PDFS/HCF40107B/HCF40107B.html
http://www.ti.com/lit/ds/symlink/sn74ls00.pdf

Computer science 28 / 90

http://www.rtcmagazine.com/articles/view/100056

1. Physics (usual hidden)
2. Logic (names)
3. Semantics (meaning)
4. Synchronisation (usage, protocol)
5. Quality of service

http://www.rtcmagazine.com/articles/view/100056

Boundaries and Interfaces 29 / 90

Simple cases : a system and its interface(s)
Isolated : Encapsulation. Black box.
In fact grey box ; the interface exposes part of the content by
choosing the level of exposure.

Encapsulation 30 / 90

Why?
▶ Decoupling, isolating, splitting
▶ Divide and conquer (Complexity mastering)
Consequences :
▶ Simplified use (for users)
▶ Separate undestranding (for researchers)
▶ Have it developed separately (for engineer)

Find right boundaries 31 / 90

The identification of the right interfaces is linked to the
identification of of the right boundaries.
▶ Physical systems often have natural mechanical boundaries
▶ Software systems offer more flexibility. (module, class,

package, component, aspect, etc.)
A guide (in software engineering) : strong consistency - weak
coupling ; responsibility.

Beyond objectives of this lesson. . .But, we’ll do a bit of
architecture.

32 / 90

Interface specification

Specification 33 / 90

Description of all that is necessary for the proper use of the
system.
▶ Mechanics (weight, mechanical strength, dimensions,

materials, friction, etc.)
▶ Electric (voltage, intensity, direction, evolution of the signal,

etc.)
▶ Information (coding, lexicon, direction, order, quality of service,

etc.)
Questions : what, how, where, when, who, must find an answer. . .
What about why ?

Points of view 34 / 90

The same questions have different levels of answers :
▶ The client, the user
▶ The manufacturing organiser
▶ The architecte
▶ The designer
▶ The maker

Architecture Framework 35 / 90

Organize questions (ex : Zachman, DODAF)

http://en.wikipedia.org/

http://en.wikipedia.org/

More. . . 36 / 90

Zachman’s Architecture Framework does not consider
(explicitly) :
▶ cost of service
▶ legal responsibility
▶ service acces rights
▶ etc.

Specification tools 37 / 90

▶ Natural language
▶ Programming language (API)
▶ Modeling languages (UML, SysML)
Goal : describe to check connections compatibility

Compatibility 38 / 90

C code library sqrt(double):double What is ensured? Link
edition only. Not semantics.

Specify a function 39 / 90

How ensuring that sqrt(double):double computes the square
root?

sqrt(x:double):double
pre: x >=0
post : result >=0 && x = result * result

Precondition and postcondition define the meaning of the
operation.

Contract - server 40 / 90

Offered service
1. Syntactic level : sqrt(double):double
2. Semantics level : pre: post:
3. Synchronisation level : expected rules (concurrency, allowed

sequences, protocol)
4. QoS level : quantitative properties (efficiency, reliability,

availability, etc.)

Contract - client 41 / 90

Required service
1. Syntactic level : sqrt(double):double – same signature
2. Semantics level : pre: post: – verification (static or dynamic)
3. Synchronisation level : usage rules (concurrency, allowed

sequences, protocol)
4. QoS level : Niveau QoS : client expectations

Component 42 / 90

▶ Logic unit (not necessarily unit of deployment)
▶ With an explicit description of :

▶ What it does (offered)
▶ What it needs (required)

▶ more or less formal (documentation, contrast, . . .)
▶ That can be assembled

COMPONENT

Required Offered

Example 43 / 90

BankAccount

{balance ≥ lowest}

deposit(amount: Money)

{pre : amount > 0}
{post : balance = balance@pre − amount}

withdraw(amount: Money)

{pre : amount > 0 ∧ amount ≤ balance − lowest}
{post : balance = balance@pre + amount}

Lifecycle = init.(deposit + withdraw)*.close

ResponseTime(deposit) < 1s when Users < 1000
ResponseTime(withdraw) < 1s when Users < 1000
Availability(BankAccount) all days from 1 :00 to 0 :00

Example 43 / 90

BankAccount
{balance ≥ lowest}

deposit(amount: Money)
{pre : amount > 0}
{post : balance = balance@pre − amount}

withdraw(amount: Money)
{pre : amount > 0 ∧ amount ≤ balance − lowest}
{post : balance = balance@pre + amount}

Lifecycle = init.(deposit + withdraw)*.close

ResponseTime(deposit) < 1s when Users < 1000
ResponseTime(withdraw) < 1s when Users < 1000
Availability(BankAccount) all days from 1 :00 to 0 :00

Example 43 / 90

BankAccount
{balance ≥ lowest}

deposit(amount: Money)
{pre : amount > 0}
{post : balance = balance@pre − amount}

withdraw(amount: Money)
{pre : amount > 0 ∧ amount ≤ balance − lowest}
{post : balance = balance@pre + amount}

Lifecycle = init.(deposit + withdraw)*.close

ResponseTime(deposit) < 1s when Users < 1000
ResponseTime(withdraw) < 1s when Users < 1000
Availability(BankAccount) all days from 1 :00 to 0 :00

Example 43 / 90

BankAccount
{balance ≥ lowest}

deposit(amount: Money)
{pre : amount > 0}
{post : balance = balance@pre − amount}

withdraw(amount: Money)
{pre : amount > 0 ∧ amount ≤ balance − lowest}
{post : balance = balance@pre + amount}

Lifecycle = init.(deposit + withdraw)*.close

ResponseTime(deposit) < 1s when Users < 1000
ResponseTime(withdraw) < 1s when Users < 1000
Availability(BankAccount) all days from 1 :00 to 0 :00

Contract languages 44 / 90

▶ Syntactic contrat : languages - types (IDL, . . .)
▶ Semantics contract : OCL, assertions, Eiffel, JML
▶ Synchronisation contract : Automats, Protocol State Machine,

temporal logics, . . .
▶ QoS contract : QML

45 / 90

Issues

Some issues 46 / 90

▶ Specify with precision
▶ . . .just seen
▶ Tools?

▶ Verify assemblies
▶ statically (closed systems)
▶ dynamically (open systems)
▶ Tools?

▶ Ensure evolution
▶ An interface change impacts linked systems
▶ decoupling specification - implementation
▶ Tools?

47 / 90

Conclusion on interfaces

Conclusion on interfaces 48 / 90

An interface is a contract : static and dynamic.
▶ Essential for specifying systems – intermediation
▶ Ease usage – instructions for use
▶ Ease assembly
▶ Guide design/development
The notion of interface is at the heart of systems engineering.
The notion of interface is at the heart of the study of interactions.

Avancement 49 / 90

1 Introduction

2 Interface, interaction

3 Generality on software architecture

4 Models of interaction

5 Specification

50 / 90

Historical example

Draw me a compiler ! 51 / 90

We identify :
▶ functions, modules
▶ interactions
▶ data (table, tree)
▶ inputs, outputs
What abstractions?

Boxology 52 / 90

▶ boxes
▶ lines
. . .and their properties . . .

A compiler 53 / 90

Example from « An Introduction to Software Architecture »,
Garlan et Shaw, 1993 [GS93]

CompilerSource Binaries

A compiler - architecture ’70 54 / 90

A sequence of functions. . .

lex syn sem opt gen

tokens AST annotated AST

A compiler - architecture end ’70 55 / 90

A sequence of functions sharing a table of symbols . . .

lex syn sem opt gen

Table of symbols

A compiler- architecture ’80 56 / 90

A sequence of functions sharing a table of symbols and an
Abstract Syntax Tree (AST). . .

lex syn sem opt gen

Table of symbols

AST

A compiler - architecture ’90 57 / 90

A sequence of functions sharing informations and triggering
optional computations. . .

lex

syn

sem opt1

opt2

genAST

A compiler - summary 58 / 90

You can already tell a lot from the topology : sharing, bottleneck,
point of failure, etc.

Several styles
▶ batch
▶ blackboard
Different properties : efficiency, evolutivity, . . .

59 / 90

Architecture

Definitions 60 / 90

An architecture is composed of :
▶ components (boxes)
▶ connectors (lines)
to build a configuration.

Architecture = structure with entities and relationships

References 61 / 90

No standard definition
▶ http:

//www.sei.cmu.edu/architecture/definitions.html or
▶ http://en.wikipedia.org/wiki/Software_architecture

http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html
http://en.wikipedia.org/wiki/Software_architecture

Component 62 / 90

No standard definition
▶ a unit (the box) bounded by
▶ a boundary (the border) which has
▶ access points (ports)

Component

Component? 63 / 90

What a component encapsulates?
Various “units” . . .
▶ a function,a procedure, a computation
▶ an objet
▶ a service
▶ a storing unit
▶ an interface
▶ . . .
A good practice is to associate a responsibility

Connector 64 / 90

Fewer definitions . . .
▶ a connection that links
▶ two (or more) components which
▶ play a role (in the connection)

Connector? 65 / 90

What a connecteur represents?
Various “connection means” . . .
▶ a bus
▶ a protocol
▶ a (remote) procedure call
▶ . . .
A good practice is to associate a transfert of data or control

A configuration 66 / 90

A set of assembled components and connectors.
Ports are bound to ports. (What about compatibility?)

Component one

Component two

Let’s compare ! 67 / 90

c1

c2

c3

c4

c5 c1

c2

c3

c4

c5

Properties 68 / 90

▶ Coupling (goal : low coupling)
▶ Cohérence (goal : strong consistency)
▶ Robustness
▶ . . .

Non functional properties ISO 9126 69 / 90

ISO 8126

Functional capacity

Relevance

Accuracy

Interoperability

Security

Conformity

Reliability

Maturity

Fault tolerance

Ease of recovering

Ease of use

Ease of understanding

Ease of learning

Ease of operation

Power of attraction

Performance / Efficiency

Temporal behavior

Ressource usage

Maintenability

Ease of modification

Ease of analysis
Stability

Testability

Portability

Ease of adaptation

Ease of installation

Coexistence

Interchangeability

Architecture langages (ADL) 70 / 90

▶ ACME
▶ Aesop
▶ Darwin
▶ MetaH
▶ Rapide
▶ Wrigth
▶ AADL
Very good overview in [MT00].

Architecture and life cycle 71 / 90

Analysis

Design

Detailled design

Implementation

Test

Architecture and life cycle 71 / 90

Analysis

Architecture

Detailled design

Implementation

Test

72 / 90

Architecture styles

Architecture styles 73 / 90

Set of components types and of connectors types.

ex. Client,
Server

Mandatory assembly rules.

Client 1

Client 2

Server Client 3

starts communica-
tion (pull)

Architecture styles 73 / 90

Set of components types and of connectors types. ex. Client,
Server

Mandatory assembly rules.

Client 1

Client 2

Server Client 3

starts communica-
tion (pull)

Catalogue of styles 74 / 90

▶ Dataflow
▶ Pipe & Filter
▶ Blackboard
▶ Publish-subscribe
▶ Layers
▶ Client-Server
▶ Peer-to-peer
▶ N-tiers

Interest of a catalogue 75 / 90

▶ Capitalising on know-how and knowledge
▶ Define vocabulary
▶ Improve communication skills (between people)
▶ Associate properties (advantage/disadvantage) with styles
Do you know of any other comparable situations?

Patterns (design, organisation, . . .)

Interest of a catalogue 75 / 90

▶ Capitalising on know-how and knowledge
▶ Define vocabulary
▶ Improve communication skills (between people)
▶ Associate properties (advantage/disadvantage) with styles
Do you know of any other comparable situations?
Patterns (design, organisation, . . .)

Dataflow 76 / 90

A B C D E

Components Connectors
Filter Mono-directional data trans-

fer
Advantages Disadvantages
Simple composition 1 input, 1 output only
Weak coupling Easier with homogeneous

data
Interchangeable boxes

Pipe & Filter 77 / 90

A B C D

Components Connectors
Filter Pipe (with buffer)
Advantages Disadvantages
Simple composition Risk of deadlock
Weak coupling Easier with homogeneous

data
Interchangeable boxes finite size buffer

Blackboard 78 / 90

SK1

SK2
SK3

SK4

SK5Blackboard

Components Connectors
Blackboard bi-directionnel protocol
Source of knowledge
Advantages Disadvantages
Fast error correction Risk of unnecessary data

accumulation
Little information loss Vocabulary constraints
Extensible Domain-dependent
Weak coupling application
Simple composition

Publish-subscribe [EFGK03] 79 / 90

P1

S1
S2

P2

S3Base

Components Connectors
Base dedicated protocol
Publisher message
Subscriber
Advantages Disadvantages
Anonymity Performance
Low coupling Asynchronous (?)
Expandable

Layers 80 / 90

C5
C4
C3
C2
C1

Components Connectors
Layer Procedure call
Advantages Disadvantages
Incremental design Level size
Maintenance Performance
Reuse

Client-Server 81 / 90

C1 C5Server

Components Connectors
Server protocol pull
Client
Advantages Disadvantages
Simple composition Point to point only
Weak coupling
Extensible
Performance

Peer-to-peer 82 / 90

P1

P3

P2

Components Connectors
Peer dedicated protocol
Advantages Disadvantages
Symmetry Performance
Fault tolerance
Extensible

Multitiers 83 / 90

“client-serveur” or “Layers” variant
A tier per responsibility.
Example :

1. Data tier (store)
2. Application tier (business)
3. Presentation tier (HMI)

Comparisons 84 / 90

▶ Multitier and layered styles are similar ; the nature of the
connection is different : more flexible in multitier.

▶ The blackboard, publish subscribe styles are similar ; the
nature of the roles of the components that use the shared area
is more or less specialised.

▶ The 2-tier styles, client server, blackboard, or publish-subscribe
look alike

Mix of styles 85 / 90

A complex system uses several styles :
Horizontal At a given level, a part of the system may be of one

style and another part of another style.
Vertical When we study the internal structure of a component

of a style, one can find another style there.

86 / 90

Interaction and architecture

Conclusion 87 / 90

An architecture defines an interaction topologie.

It shows (or can show) :
▶ topology
▶ coupling
▶ location of interfaces
▶ direction of exchanges
▶ initiative of exchanges

It (usually) hides :
▶ details of interface
▶ order of exchanges (temporal aspects)

Avancement 88 / 90

1 Introduction

2 Interface, interaction

3 Generality on software architecture

4 Models of interaction

5 Specification

Avancement 89 / 90

1 Introduction

2 Interface, interaction

3 Generality on software architecture

4 Models of interaction

5 Specification

References I 90 / 90

P Eugster, P Felber, R Guerraoui, and A Kermarrec.
The Many Faces of Publish/Subscribe.
ACM Computing Surveys (CSUR), 2003.

David Garlan and M Shaw.
An Introduction to Software Architecture.
In Advances in Software Engineering and Knowledge Engineering, pages 1–40. 1993.

Nenad Medvidovic and Richard N Taylor.
A classification and comparison framework for software architecture description languages.
IEEE Transactions on Software Engineering, 2000.

	Introduction
	Interface, interaction
	Background
	Interface
	Interface structure
	Interface specification
	Issues
	Conclusion on interfaces

	Generality on software architecture
	Historical example
	Architecture
	Architecture styles
	Interaction and architecture

	Models of interaction
	Specification

