
NGUYEN SAO MAI - LEARNING
THROUGH INTERACTIONS WITH
TUTORS AND THE ENVIRONMENT

26/0
9/20
18 1

INTERACTIVE MACHINE LEARNING

LEARNING THROUGH
INTERACTIONS WITH

 TUTORS AND THE
ENVIRONMENT:

 IMITATION AND
REINFORCEMENT

LEARNING
Nguyen Sao Mai
http://nguyensmai.free.fr

http://nguyensmai.free.fr

NGUYEN SAO MAI - LEARNING
THROUGH INTERACTIONS WITH
TUTORS AND THE ENVIRONMENT

26/0
9/20
18 2

1. WHAT DOES
INTERACTIVE LEARNING

MEAN?

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

1. WHAT DOES INTERACTIVE LEARNING MEAN?
1.1. The Artificial Agent in Its Environment

26/09/2018

3

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

1. WHAT DOES INTERACTIVE LEARNING MEAN?
1.2. Challenges

• Vocal interaction: speech
recognition, speech generation (text-
to-speech)

• Natural interaction : multi-modal,
non-verbal interaction, gesture,
expressive emotion-based
interaction

• Socio-cognitive skills : socially
acceptable behaviours, turn-taking,
coordination, theory of mind

• Physical interaction : touch (tactile
sensors), grasping, manipulation

26/09/2018

4

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

1. WHAT DOES INTERACTIVE LEARNING MEAN?
1.3. Theoretical approaches

• Embodiment : the
environment has a physical
incarnation, the agent has a
physical incarnation => its
learning, capacities,
behaviour depends on its
physical body

• Enactivism : Learning of the
agent in its environment

• Life-long learning : the
environment and tasks can
change

26/09/2018

5

• Developmental
approaches : there is an
orderly way to learn multiple
tasks, the learning is
progressive and hierarchical
-> Developmental
psychology

• Cognitive approaches :
inspired by cognitive
science, neuroscience,
neuronal computation
models. Decomposes into a
task into cognitive skills/
functions

NGUYEN SAO MAI - LEARNING
THROUGH INTERACTIONS WITH
TUTORS AND THE ENVIRONMENT

26/0
9/20
18 6

2. INTERACTIONS WITH
TUTORS:

IMITATION LEARNING

OR
PROGRAMMING BY

DEMONSTRATION

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.1. What to imitate ?

26/09/2018

7

Mimicry : reproduce the movement Emulation : reproduce the effects/outcomes

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.2. Why imitation learning? What is imitation learning?

• An implicit, natural means of training a machine that would be
accessible to lay people

• A powerful mechanism for reducing the complexity of search
spaces for learning

• Studying and modeling the coupling of perception and action

26/09/2018

8

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.2. Why imitation learning? What is imitation learning?

26/09/2018

9

Generalize across sets of
demonstrations.

Copying the demonstrated
movements

• How to generalize a task
• How to evaluate a reproduction attempt
• How to better define the role of the user

during learning

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.2. Why imitation learning? What is imitation learning?

26/09/2018

10

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.3. Engineering approaches to PbD

The different types of representation to encode a skill
❖ a low-level representation of the skill, taking the form of a non-

linear mapping between sensory and motor information, which we
will later refer to as trajectories encoding

❖ high-level representation of the skill that decomposes the skill in a
sequence of action-perception units, which we will refer to as
symbolic encoding  

what to imitate, how to imitate, when to imitate and who to imitate :
making no assumptions on the type of skills that may be transmitted

26/09/2018

11

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.4. How to evaluate a reproduction attempt

❖ Metric of imitation performance: extract the important features
characterizing the skill

❖ An optimal controller to imitate by trying to minimize this metric

26/09/2018

12

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.5. Symbolic Learning and Encoding of Skills

26/09/2018

13

➢ Segment and encode the task according to sequences of
predefined actions

➢ Encoding and regenerating (HMM)

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.6. Gaussian Mixture Model and Regression

26/09/2018

14

►We can model observed data X= (x,a) by a
probabilistic density distribution P(X) = p(x,a)

►Gaussian Mixture Models:

►Multivariate Gaussian

 𝛍 is the mean
 𝚺 is the covariance matrix

►We can infer the robotic command
►v= argmaxv p(v|x)

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.7. Beyond imitation learning

26/09/2018

15

These early works highlighted the importance of providing a set
of examples that the robot can use:

• by constraining the demonstrations to modalities that the
robot can understand

• by providing a sufficient number of examples to achieve a
desired generality.

• by providing examples representative enough of the all the
situations

• By limiting the correspondence problems

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2.7. Beyond imitation learning

❖ give the teacher an active role during learning
❖ the interaction aspect of the transfer process
▪ Social cues
▪ Pointing and gazing
▪ Vocal speech recognition
▪ Prosody of the speech

26/09/2018

162. IMITATION LEARNING

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING
2.7. Beyond imitation learning

26/09/2018

17

PbD can be jointly used with other learning strategies to
overcome some limitations of PbD

18

3:13

2. IMITATION LEARNING
2.7. BEYOND IMITATION LEARNING

NGUYEN SAO MAI - LEARNING
THROUGH INTERACTIONS WITH
TUTORS AND THE ENVIRONMENT

26/0
9/20
18 19

3. INTERACTION WITH THE
ENVIRONMENT :

REINFORCEMENT LEARNING

3. REINFORCEMENT LEARNING
3.1. What is reinforcement learning?

20

• Agent-oriented learning—learning by interacting with an
environment to achieve a goal
• more realistic and ambitious than other kinds of machine

learning
• Learning by trial and error, with only delayed evaluative

feedback (reward)
• the kind of machine learning most like natural learning
• learning that can tell for itself when it is right or wrong

• The beginnings of a science of mind that is neither natural
science nor applications technology

3. REINFORCEMENT LEARNING
3.1. What is reinforcement learning?

21

Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine
Learning

Classical/Operant
Conditioning

Optimal
Control

Reward
System

Operations
Research

Bounded
Rationality

Reinforcement
Learning

David Silver 2015

EXAMPLE: HAJIME KIMURA’S RL ROBOTS 22

Before After

Backward New Robot, Same algorithm

3. REINFORCEMENT LEARNING
3.2. Some Reinforcement Learning Successes

✤Learned the world’s best player of Backgammon (Tesauro 1995)
✤Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+)
✤Widely used in the placement and selection of advertisements and pages on

the web (e.g., A-B tests)
✤Used to make strategic decisions in Jeopardy! (IBM’s Watson 2011)
✤Achieved human-level performance on Atari games from pixel-level visual

input, in conjunction with deep learning (Google Deepmind 2015)
✤Google Deepmind’s AlphaGo defeats the world Go champion, vastly improving

over all previous programs (2016)
✤In all these cases, performance was better than could be obtained by any

other method, and was obtained without human instruction

23

3. REINFORCEMENT LEARNING
3.3. Definitions

24
Agent and Environment

S e
t

S a
t

ActionAtObservation Ot RewardRt

IMT-Atlantique Reinforcement Learning 3 / 8

❖ The agent …
❖ performs action At
❖ obtains an observation Ot
❖ obtains reward Rt

❖ The environment …
❖ receives action At
❖ produces Ot
❖ produces reward Rt

❖ Agent seeks to maximize its cumulative reward on the long run
❖ Agent learns a policy mapping states to actions
❖ Environment may be unknown, nonlinear, stochastic and complex

and non-observable :
❖ Full observability :
❖ Partial observability: sta is estimated by the environment

De�nitions

The agent...
performs action At .
obtains an observation Ot .
obtains reward Rt .

The environment...
receives action At .
produces Ot .
produces reward Rt .

Observability :
Full observability :
S a
t = S o

t = Ot
Partial observability : no
access to full environment.

The agent indirectly
observes the environment
S a
t is estimated by the

agent

IMT-Atlantique Reinforcement Learning 4 / 8

3. REINFORCEMENT LEARNING
3.4. Policy and Value Function

25

❖ Policy π
❖ A policy is the agent behavior
❖ Map from state to action
❖ Deterministic : a = π(s)
❖ Stochastic : π(a|s) = P [At = a|St = s]

❖ Value Function V
❖ Prediction of future reward
❖ Evaluates the goodness of states
❖ Action selection using the value function
❖ vπ(s)=𝔼(Rt+1 +γRt+2 +...|St =s)

❖ Q-Value Function Q
❖ same as V but for each action : prediction of future reward
❖ Evaluates the goodness of state-action pairs
❖ Action selection using the value function
❖ Qπ(s,a)=𝔼(Rt+1 +γRt+2 +...|St =s, at =a)

❖ Vπ(s)=𝔼(Rt+1 +γRt+2 +...|St =s)

❖ Optimal solution
❖ Policy π*
❖ V*(s) = maxπ Vπ(s)
❖ Q*(s,a)= maxπ Qπ(s,a)

❖ Bellmann equation: for s,a,r and next state s’
❖ V*(s) = maxa [R(s)+γ V*(s′) | s,a]
❖ Q*(s,a)=𝔼 [R(s) +γmaxa′Q(s′,a′) |s,a]
❖ Bellman optimality equation expresses the fact

that the value of a state under an optimal policy
must equal the expected return for the best
action from that state

3. REINFORCEMENT LEARNING
3.5. The Bellman equation

26

3. REINFORCEMENT LEARNING
3.6. TD Prediction

27

Policy Evaluation (the prediction problem):
 for a given policy π, compute the state-value function vπ

Recall: Simple every-visit Monte Carlo method:

target: the actual return after time t

Chapter 6

Temporal-Di↵erence Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-di↵erence (TD) learning. TD learning is a combination
of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo
methods, TD methods can learn directly from raw experience without a model of
the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome (they bootstrap).
The relationship between TD, DP, and Monte Carlo methods is a recurring theme in
the theory of reinforcement learning. This chapter is the beginning of our exploration
of it. Before we are done, we will see that these ideas and methods blend into each
other and can be combined in many ways. In particular, in Chapter 7 we introduce
the TD(�) algorithm, which seamlessly integrates TD and Monte Carlo methods.

As usual, we start by focusing on the policy evaluation or prediction problem, that
of estimating the value function v⇡ for a given policy ⇡. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation
of generalized policy iteration (GPI). The di↵erences in the methods are primarily
di↵erences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem.
Given some experience following a policy ⇡, both methods update their estimate v
of v⇡ for the nonterminal states St occurring in that experience. Roughly speaking,
Monte Carlo methods wait until the return following the visit is known, then use
that return as a target for V (St). A simple every-visit Monte Carlo method suitable
for nonstationary environments is

V (St) V (St) + ↵
h
Gt � V (St)

i
, (6.1)

where Gt is the actual return following time t, and ↵ is a constant step-size parameter
(c.f., Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo
methods must wait until the end of the episode to determine the increment to V (St)

127

The simplest temporal-difference method TD(0):

128 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

(only then is Gt known), TD methods need wait only until the next time step. At
time t + 1 they immediately form a target and make a useful update using the
observed reward Rt+1 and the estimate V (St+1). The simplest TD method, known
as TD(0), is

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
. (6.2)

In e↵ect, the target for the Monte Carlo update is Gt, whereas the target for the TD
update is Rt+1 + �V (St+1).

Because the TD method bases its update in part on an existing estimate, we say
that it is a bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡

" 1X

k=0

�kRt+k+1

����� St =s

#

= E⇡

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s

#

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an
estimate because the expected value in (6.3) is not known; a sample return is used
in place of the real expected return. The DP target is an estimate not because of
the expected values, which are assumed to be completely provided by a model of the
environment, but because v⇡(St+1) is not known and the current estimate, V (St+1),
is used instead. The TD target is an estimate for both reasons: it samples the
expected values in (6.4) and it uses the current estimate V instead of the true v⇡.
Thus, TD methods combine the sampling of Monte Carlo with the bootstrapping of
DP. As we shall see, with care and imagination this can take us a long way toward
obtaining the advantages of both Monte Carlo and DP methods.

Figure 6.1 specifies TD(0) completely in procedural form.

Input: the policy ⇡ to be evaluated
Initialize V (s) arbitrarily (e.g., V (s) = 0, 8s 2 S+)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A; observe reward, R, and next state, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Figure 6.1: Tabular TD(0) for estimating v⇡.

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

target: an estimate of the return

3. REINFORCEMENT LEARNING
3.6. TD Prediction

28

6.1. TD PREDICTION 129

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the
time, the day of week, and anything else that might be relevant. Say on this Friday
you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain.
Tra�c is often slower in the rain, so you reestimate that it will take 35 minutes from
then, or a total of 40 minutes. Fifteen minutes later you have completed the highway
portion of your journey in good time. As you exit onto a secondary road you cut
your estimate of total travel time to 35 minutes. Unfortunately, at this point you get
stuck behind a slow truck, and the road is too narrow to pass. You end up having
to follow the truck until you turn onto the side street where you live at 6:40. Three
minutes later you are home. The sequence of states, times, and predictions is thus
as follows:

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving o�ce, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.1 We
are not discounting (� = 1), and thus the return for each state is the actual time to
go from that state. The value of each state is the expected time to go. The second
column of numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.2 (left). The arrows
show the changes in predictions recommended by the constant-↵ MC method (6.1),
for ↵ = 1. These are exactly the errors between the estimated value (predicted time
to go) in each state and the actual return (actual time to go). For example, when
you exited the highway you thought it would take only 15 minutes more to get home,

1If this were a control problem with the objective of minimizing travel time, then we would of
course make the rewards the negative of the elapsed time. But since we are concerned here only
with prediction (policy evaluation), we can keep things simple by using positive numbers.

3.6. TD Prediction
29

3. REINFORCEMENT LEARNING
3.7. Sarsa: On-Policy TD Control

30

From state st, choose action at, observe rt+1, st+1, choose at+1
Update the state-action function Q(st,at) to update policy142 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

Choose A

0 from S

0 using policy derived from Q (e.g., "-greedy)
Q(S,A) Q(S,A) + ↵[R+ �Q(S0

, A

0)�Q(S,A)]
S S

0; A A

0;
until S is terminal

Figure 6.9: Sarsa: An on-policy TD control algorithm.

long as all state–action pairs are visited an infinite number of times and the
policy converges in the limit to the greedy policy (which can be arranged, for
example, with "-greedy policies by setting " = 1/t), but this result has not yet
been published in the literature.

Example 6.5: Windy Gridworld Figure 6.10 shows a standard gridworld,
with start and goal states, but with one di↵erence: there is a crosswind upward
through the middle of the grid. The actions are the standard four—up, down,

right, and left—but in the middle region the resultant next states are shifted
upward by a “wind,” the strength of which varies from column to column. The
strength of the wind is given below each column, in number of cells shifted
upward. For example, if you are one cell to the right of the goal, then the
action left takes you to the cell just above the goal. Let us treat this as an
undiscounted episodic task, with constant rewards of �1 until the goal state
is reached. Figure 6.11 shows the result of applying "-greedy Sarsa to this
task, with " = 0.1, ↵ = 0.5, and the initial values Q(s, a) = 0 for all s, a. The
increasing slope of the graph shows that the goal is reached more and more
quickly over time. By 8000 time steps, the greedy policy (shown inset) was
long since optimal; continued "-greedy exploration kept the average episode
length at about 17 steps, two more than the minimum of 15. Note that Monte
Carlo methods cannot easily be used on this task because termination is not
guaranteed for all policies. If a policy was ever found that caused the agent to
stay in the same state, then the next episode would never end. Step-by-step
learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something
else.

Exercise 6.6: Windy Gridworld with King’s Moves Re-solve the
windy gridworld task assuming eight possible actions, including the diagonal
moves, rather than the usual four. How much better can you do with the extra

6.4. Sarsa: On-policy TD Control 129

arbitrary target policy ⇡ and covering behavior policy b, using at each step t the importance
sampling ratio ⇢t:t (5.3). ⇤

6.4 Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pattern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. As with Monte Carlo methods, we face the need to
trade o↵ exploration and exploitation, and again approaches fall into two main classes:
on-policy and o↵-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function.
In particular, for an on-policy method we must estimate q⇡(s, a) for the current behavior
policy ⇡ and for all states s and actions a. This can be done using essentially the same TD
method described above for learning v⇡. Recall that an episode consists of an alternating
sequence of states and state–action pairs:

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

In the previous section we considered transitions from state to state and learned the
values of states. Now we consider transitions from state–action pair to state–action pair,
and learn the values of state–action pairs. Formally these cases are identical: they are
both Markov chains with a reward process. The theorems assuring the convergence of
state values under TD(0) also apply to the corresponding algorithm for action values:

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �Q(St+1, At+1)�Q(St, At)

i
. (6.7)

Sarsa

This update is done after every transition from a nonterminal state St. If
St+1 is terminal, then Q(St+1, At+1) is defined as zero. This rule uses every
element of the quintuple of events, (St, At, Rt+1, St+1, At+1), that make up a
transition from one state–action pair to the next. This quintuple gives rise to
the name Sarsa for the algorithm. The backup diagram for Sarsa is as shown
to the right.

It is straightforward to design an on-policy control algorithm based on the Sarsa
prediction method. As in all on-policy methods, we continually estimate q⇡ for the
behavior policy ⇡, and at the same time change ⇡ toward greediness with respect to q⇡.
The general form of the Sarsa control algorithm is given in the box on the next page.

The convergence properties of the Sarsa algorithm depend on the nature of the policy’s
dependence on Q. For example, one could use "-greedy or "-soft policies. Sarsa converges
with probability 1 to an optimal policy and action-value function as long as all state–action
pairs are visited an infinite number of times and the policy converges in the limit to
the greedy policy (which can be arranged, for example, with "-greedy policies by setting
" = 1/t).

Exercise 6.8 Show that an action-value version of (6.6) holds for the action-value form
of the TD error �t = Rt+1 + �Q(St+1, At+1)�Q(St, At), again assuming that the values
don’t change from step to step. ⇤

3. REINFORCEMENT LEARNING
3.7 Q-Learning: Off-Policy TD Control

31

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 145

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S,A) Q(S,A) + ↵[R+ �max
a

Q(S0
, a)�Q(S,A)]

S S

0;
until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:

3. REINFORCEMENT LEARNING
3.8. On-policy/off-policy control

32

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

PRINCIPLES OF INTERACTIVE LEARNING
Bibliography

Imitation learning
• Aude Billard, Sylvain Calinon, Rüdiger Dillmann, Stefan Schaal, Ch 59 Robot

Programming by Demonstration in : Siciliano, Bruno, and Oussama Khatib, eds.
Springer handbook of robotics. Springer, 2016.

• S. Calinon, A. Billard: What is the Teacher’s Role in Robot Programming by
Demonstration? - Toward Benchmarks for Improved Learning, Interact. Stud. 8(3),
441–464 (2007), Special Issue on Psychological Benchmarks in Human-Robot
Interaction

• S. Calinon, F. Guenter, A. Billard: On Learning Representing and Generalizing a
Task in a Humanoid Robot, IEEE Trans. Syst. Man Cybernet. 37(2), 286– 298
(2007), Special issue on robot learning by observation, demonstration and imitation

Reinforcement learning
• R. S. Sutton and A. G. Barto. Reinforcement Learning: an introduction. MIT Press,

1998.
• https://mpatacchiola.github.io/blog/

26/09/2018

33

Mai Nguyen - http://nguyensmai.free.fr

