

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

INTERACTIVE MACHINE LEARNING LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT:

IMITATION AND REINFORCEMENT LEARNING

Nguyen Sao Mai <http://nguyensmai.free.fr>

1. WHAT DOES INTERACTIVE LEARNING MEAN?

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

1. WHAT DOES INTERACTIVE LEARNING MEAN? 1.1. The Artificial Agent in Its Environment

IMT Atlantique Bretagne-Pays de la Loire École Mines Télécom

26/09/2018

1. WHAT DOES INTERACTIVE LEARNING MEAN? 1.2. Challenges

- **Vocal interaction**: speech recognition, speech generation (textto-speech)
- **Natural interaction** : multi-modal, non-verbal interaction, gesture, expressive emotion-based interaction
- **Socio-cognitive skills** : socially acceptable behaviours, turn-taking, coordination, theory of mind
- **Physical interaction** : touch (tactile sensors), grasping, manipulation

Bretagne-Pays de la Loire NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT École Mines-Télécom

1. WHAT DOES INTERACTIVE LEARNING MEAN? 1.3. Theoretical approaches

- **Embodiment** : the environment has a physical incarnation, the agent has a physical incarnation => its learning, capacities, behaviour depends on its physical body
- **Enactivism** : Learning of the agent in its environment
- **Life-long learning** : the environment and tasks can change

- **Developmental approaches** : there is an orderly way to learn multiple tasks, the learning is progressive and hierarchical -> Developmental psychology
- **Cognitive approaches** : inspired by cognitive science, neuroscience, neuronal computation models. Decomposes into a task into cognitive skills/ functions

Bretagne-Pays de la Loire NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT École Mines-Télécom

2. INTERACTIONS WITH TUTORS:

IMITATION LEARNING OR PROGRAMMING BY DEMONSTRATION

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

2. IMITATION LEARNING 2.1. What to imitate ?

Mimicry : reproduce the movement Emulation : reproduce the effects/outcomes

IMT Atlantique Bretagne-Pays de la Loire NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT École Mines Télécom

2. IMITATION LEARNING

2.2. Why imitation learning? What is imitation learning?

- An implicit, *natural* means of training a machine that would be **accessible to lay people**
- A powerful mechanism for **reducing the complexity of search** spaces for learning
- Studying and modeling the **coupling of perception and action**

2. IMITATION LEARNING

2.2. Why imitation learning? What is imitation learning?

26/09/2018

Generalize across sets of demonstrations.

Copying the demonstrated movements

- How to **generalize** a task
- How to **evaluate** a reproduction attempt
- How to better define the role of the **user** during learning

2. IMITATION LEARNING 2.2. Why imitation learning? What is imitation learning?

Observation of multiple demonstrations

Reproduction of a generalized motion in a different situation

26/09/2018

2. IMITATION LEARNING 2.3. Engineering approaches to PbD

The different types of representation to encode a skill

- ❖ **a low-level representation** of the skill, taking the form of a nonlinear mapping between sensory and motor information, which we will later refer to as *trajectories encoding*
- ❖ **high-level representation** of the skill that decomposes the skill in a sequence of action-perception units, which we will refer to as *symbolic encoding*

what to imitate, how to imitate, when to imitate and who to imitate : making no assumptions on the type of skills that may be transmitted

26/09/2018

2. IMITATION LEARNING

2.4. How to evaluate a reproduction attempt

- ❖ **Metric of imitation performanc***e***:** extract the important features characterizing the skill
- ❖ An **optimal controller** to imitate by trying to **minimize this metric**

2. IMITATION LEARNING

2.5. Symbolic Learning and Encoding of Skills

26/09/2018

- ➢ **Segment and encode** the task according to sequences of *predefined* actions
- ➢ **Encoding and regenerating** (HMM)

2. IMITATION LEARNING 2.6. Gaussian Mixture Model and Regression

 \blacktriangleright We can model observed data $X=(x,a)$ by a probabilistic density distribution $P(X) = p(x,a)$

26/09/2018

►We can infer the robotic command \blacktriangleright v= argmax_v p(v|x)

►Gaussian Mixture Models:

$$
p(X, \pi, \mu, \Sigma) = \sum_{i=1}^K \pi_i \mathcal{N}(X, \mu_i, \Sigma_i)
$$

►Multivariate Gaussian

$$
\mathcal{N}(X, \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)
$$

 μ is the mean Σ is the covariance matrix

2. IMITATION LEARNING 2.7. Beyond imitation learning

26/09/2018

These early works highlighted the importance of providing a set of examples that the robot can use:

- by constraining the demonstrations to **modalities** that the robot can understand
- by providing a sufficient **number of examples** to achieve a desired generality.
- by providing **examples representative** enough of the all the situations
- By limiting the **correspondence problems**

- ❖ give the **teacher an active role** during learning
- ❖ the interaction aspect of the **transfer process**
- *Social cues*
- Pointing and gazing
- Vocal speech recognition
- **Prosody of the speech**

2. IMITATION LEARNING

2.7. Beyond imitation learning

2. IMITATION LEARNING 2.7. Beyond imitation learning

PbD can be jointly used with other learning strategies to overcome some limitations of PbD

26/09/2018

3:13

2. IMITATION LEARNING

2.7. BEYOND IMITATION LEARNING

Towards **Machine Learning** of Motor Skills in Robotics

Jan Peters

Intelligent Autonomous Systems Technische Universität Darmstadt

> Robot Learning Lab **Max Planck Institute** for Intelligent Systems

3. INTERACTION WITH THE ENVIRONMENT :

REINFORCEMENT LEARNING

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

3. REINFORCEMENT LEARNING

3.1. What is reinforcement learning?

- Agent-oriented learning—learning by **interacting with an environment** to achieve a goal
	- more realistic and ambitious than other kinds of machine learning
- Learning by **trial and error**, with only delayed evaluative feedback (**reward**)
	- the kind of machine learning most like natural learning
	- learning that can tell for itself when it is right or wrong
- The beginnings of a **science of mind** that is neither natural science nor applications technology

3.1. What is reinforcement learning?

3. REINFORCEMENT LEARNING Many Faces of Reinforcement Learning

EXAMPLE: HAJIME KIMURA'S RL ROBOTS 22

Before After

Backward New Robot, Same algorithm

3. REINFORCEMENT LEARNING

3.2. Some Reinforcement Learning Successes

✤Learned the world's best player of Backgammon (Tesauro 1995) ✤Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+) ✤Widely used in the placement and selection of advertisements and pages on the web (e.g., A-B tests)

- ✤Used to make strategic decisions in *Jeopardy!* (IBM's Watson 2011) ✤Achieved human-level performance on Atari games from pixel-level visual input, in conjunction with deep learning (Google Deepmind 2015) ✤Google Deepmind's AlphaGo defeats the world Go champion, vastly improving over all previous programs (2016)
- ✤In all these cases, performance was better than could be obtained by any other method, and was obtained without human instruction

obtains an observation O_t

3. REINFORCEMENT LEARNING 3.3. Definitions

- ❖ Agent seeks to maximize its cumulative **reward** on the long run
- ❖ Agent learns a policy **mapping states to actions**
- ❖ Environment may be unknown, nonlinear, stochastic and complex and non-observable : The agent...

 $\mathbf{v} = \mathbf{v}_t$ **and** $\mathbf{v} = \mathbf{v}_t$ $\mathbf{v} = \mathbf{v}_t$ *c* ❖ Partial observability: st^a is estimated by the environment access to full environment. The full environment of the full environment.

3. REINFORCEMENT LEARNING

3.4. Policy and Value Function

- ❖ Policy π
	- ❖ A policy is the agent behavior
	- Map from state to action
	- \triangleleft Deterministic : $a = \pi(s)$
	- \div Stochastic : π(a|s) = P [A_t = a|S_t = s]
- ❖ Value Function V
	- ❖ Prediction of future reward
	- Evaluates the goodness of states
	- ❖ Action selection using the value function
	- $\cdot \cdot \cdot$ $v_{\pi}(s) = E(R_{t+1} + \gamma R_{t+2} + \dots | S_t = s)$
- ❖ Q-Value Function Q
	- same as V but for each action : prediction of future reward
	- ❖ Evaluates the goodness of state-action pairs
	- ❖ Action selection using the value function

$$
\mathbf{\hat{v}} \quad V_{\pi}(s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + ... | S_t = s)
$$

- **Optimal solution**
	- ❖ Policy π*
	- $\mathbf{\hat{v}}$ $\mathbf{V}^*(s) = \max_{\pi} \mathbf{V}_{\pi}(s)$
	- \triangleleft Q^{*}(s,a)= max_π Q_π(s,a)

- ❖ Bellmann equation: for s,a,r and next state s'
	- $\mathbf{\hat{v}}$ $\mathbf{V}^*(s)$ = max_a [R(s)+y $\mathbf{V}^*(s')$ | s,a]
	- \triangleleft Q^{*}(s,a)= E [R(s) +ymax_{a'}Q(s',a') |s,a]
	- ❖ Bellman optimality equation expresses the fact that the value of a state under an optimal policy must equal the expected return for the best action from that state

3. REINFORCEMENT LEARNING 3.5. The Bellman equation

3. REINFORCEMENT LEARNING 3.6. TD Prediction 6.1 TD Prediction *n*-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies J. KEINFUKUEIVIEN I LEAKI

```
\cdot the policy \pi to be evaluated
      \frac{1}{\pi} and policy π, as be evaluated.<br>
\frac{1}{\pi} for \frac{1}{\pi} for \frac{1}{\pi} or \frac{1}{\pi} (0.1)
      for each episode<sup>.</sup>
                                    the actual return after the a
Algorithm parameter: step size \alpha \in (0, 1]Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0V (St) V (St) + ↵
             action given by \pi for S(extian A observe R \mathcal{C}'\text{m}(\text{C}) must watter watter the end of the end of the increment to \text{V}(\text{C}) and \text{V}(\text{C}) and \text{V}(\text{C}) and \text{V}(\text{C})V(S) \leftarrow V(S) + \alpha \left[ R + \gamma V(S') - V(S) \right]ach chhoac.
            \frac{1}{\sigma} \frac{\cot \theta}{\cot \theta} \frac{\cot \theta}{\cot \theta} \frac{\cot \theta}{\cot \theta}A \leftarrow action given by \pi for S<br>
A and make a useful up \alpha'\partial G action A, observe I, \partial<br>\Gammat<sub>1</sub>(\alpha). \Gammaf<sub>1</sub>(\alpha). T<sub>1</sub>(\alpha).
                  V (Starget:
                                       an estimate of the return
Input: the policy \pi to be evaluated
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Take action A, observe R, S'
                            \sqrt{2}R + \gamma V(S') - V(S)\overline{\phantom{a}}S \leftarrow S'until S is terminal
                              target: an estimate of the return
```


3. REINFORCEMENT LEARNING $\begin{array}{ccc}\n\text{D}\text{C}\text{I}\text{N}\text{I}\text{C}\text{O}\text{O}\text{C}\text{I}\text{M}\text{C}\text{N}\text{I}\text{I}\text{I}\text{C}\n\end{array} \qquad\qquad \begin{array}{ccc}\n\text{A}\text{D}\text{I}\text{I}\text{I}\text{N}\text{I}\text{C}\n\end{array} \qquad\qquad \begin{array}{ccc}\n\text{A}\text{D}\text{I}\text{I}\text{I}\text{N}\text{I}\text{C}\n\end{array}$ α is the sequence of sequence of sequence of sequence of sequence of states, the sequence of α

3.6. TD Prediction $3.0.11$

3.6. TD Prediction

 $k=7$

3. REINFORCEMENT LEARNING

3.7. Sarsa: On-Policy TD Control 37 Sarsa: On-Policy ^{TD} Control s... baisa. On I oney ID

From state s_t , choose action a_t , observe r_{t+1} , s_{t+1} , choose a_{t+1} Update the state-action function Q(st,at) to update policy $E_{\text{nom ofoto}}$ s choose section θ states θ states θ states θ $\frac{1}{2}$ is state s_l, enouse action a_l, observe $\frac{1}{2}$, $\frac{1}{2}$, enouse a_{l+1}

Initialize $Q(s, a)$, $\forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize *S* Choose *A* from *S* using policy derived from Q (e.g., ε -greedy) **Repeat (for each step of episode):**
 $\sum_{i=1}^{\infty}$ Take action A , observe R , S' Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until *S* is terminal $\boxed{\text{Initialize } \text{O}(\text{e } a) \; \forall \text{e} \in \text{S} \; a \in \mathcal{A}(\text{e}) \; \text{ arbitrarily and } \text{O}(t \text{ or } t \text{ of }$ *Mepeat* (for each episc) \overline{S} $\overline{\mathcal{C}}$ *Rt*+1 + *Q*(*St*+1*, At*+1) *Q*(*St, At*) element of the action *A*, observe *R*, *S*^t , and make up and m $\text{Cmose } A$ from 5 using policy derived from Q (e.g., ϵ -greedy) to the right. It is straightforward to design and one-policy control algorithm based on the Sarsa algorithm based on the Sar
It is straightforward to the Sarsa algorithm based on the Sarsa algorithm based on the Sarsa algorithm based o

$\overline{1}$

Repeat (for each step of episode): Choose *A* from *S* using policy derived from Q (e.g., ε -greedy) Take action *A*, observe *R*, *S'* $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_{a} Q(S', a) - Q(S, A)]$ $S \leftarrow S';$ $\text{until } S \text{ is terminal}$ \Box Repeat (for each step of episode): Γ choose 4 from S using policy derived from Ω (e.g. s-greedy) in the section A observe B S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{\alpha} Q(S', a) - Q(S, A)]$ $S \leftarrow S'$

Initialize *S*

$$
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \Big]
$$

 $\text{Initialize } Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), \text{ arbitrarily, and } Q(\text{terminal-state}, \cdot) = 0$ Repeat (for each episode): π tiplize $O(e, a)$ $\forall e \in S$ $a \in \mathcal{A}(e)$ prhitrarily and $O(torminal, data) = 0$ \mathbb{R} analy (signal): $T_{\text{initialize}} S$

3. REINFORCEMENT LEARNING 3.7 Q-Learning: Off-Policy TD Control $\begin{array}{c} \text{9.}\end{array}$ O./ Q-Learning. One foncy the control

One-step Q-learning One-step Q-learning:

3. REINFORCEMENT LEARNING

3.8. On-policy/off-policy control

PRINCIPLES OF INTERACTIVE LEARNING Bibliography

Imitation learning

- Aude Billard, Sylvain Calinon, Rüdiger Dillmann, Stefan Schaal, Ch 59 Robot Programming by Demonstration in : Siciliano, Bruno, and Oussama Khatib, eds. *Springer handbook of robotics*. Springer, 2016.
- S. Calinon, A. Billard: What is the Teacher's Role in Robot Programming by Demonstration? - Toward Benchmarks for Improved Learning, Interact. Stud. 8(3), 441–464 (2007), Special Issue on Psychological Benchmarks in Human-Robot Interaction
- S. Calinon, F. Guenter, A. Billard: On Learning Representing and Generalizing a Task in a Humanoid Robot, IEEE Trans. Syst. Man Cybernet. 37(2), 286– 298 (2007), Special issue on robot learning by observation, demonstration and imitation

Reinforcement learning

- R. S. Sutton and A. G. Barto. Reinforcement Learning: an introduction. MIT Press, 1998.
- https://mpatacchiola.github.io/blog/

26/09/2018

Mai Nguyen - http://nguyensmai.free.fr

Bretagne-Pays de la Loire École Mines Télécom