

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

INTERACTIVE MACHINE LEARNING LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT:

Nguyen Sao Mai http://nguyensmai.free.fr

IMITATION AND REINFORCEMENT LEARNING

1. WHAT DOES INTERACTIVE LEARNING MEAN?

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

1. WHAT DOES INTERACTIVE LEARNING MEAN? 1.1. The Artificial Agent in Its Environment

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

1. WHAT DOES INTERACTIVE LEARNING MEAN? 1.2. Challenges

- Vocal interaction: speech recognition, speech generation (text to-speech)
- Natural interaction : multi-modal, non-verbal interaction, gesture, expressive emotion-based interaction
- Socio-cognitive skills : socially acceptable behaviours, turn-taking, coordination, theory of mind
- **Physical interaction** : touch (tactile sensors), grasping, manipulation

Bretagne Pays de la Loire NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT École Mines-Télécom

1. WHAT DOES INTERACTIVE LEARNING MEAN?

1.3. Theoretical approaches

- **Embodiment** : the environment has a physical incarnation, the agent has a physical incarnation => its learning, capacities, behaviour depends on its physical body
- **Enactivism** : Learning of the agent in its environment
- Life-long learning : the environment and tasks can change

- **Developmental** approaches : there is an orderly way to learn multiple tasks, the learning is progressive and hierarchical -> Developmental psychology
- **Cognitive approaches :** inspired by cognitive science, neuroscience, neuronal computation models. Decomposes into a task into cognitive skills/ functions

Bretagne Pays de la Loire NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT École Mines-Télécom

2. INTERACTIONS WITH **TUTORS:**

IMITATION LEARNING OR **PROGRAMMING BY** DEMONSTRATION

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

2. IMITATION LEARNING 2.1. What to imitate ?

Mimicry : reproduce the movement

Emulation : reproduce the effects/outcomes

IMT Atlantique Bretagne-Pays de la Loire NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT École Mines-Télécom

2.2. Why imitation learning? What is imitation learning?

- An implicit, *natural* means of training a machine that would be accessible to lay people
- A powerful mechanism for reducing the complexity of search spaces for learning
- Studying and modeling the coupling of perception and action

at would be ity of search on and action

2.2. Why imitation learning? What is imitation learning?

Copying the demonstrated movements

Generalize across sets of demonstrations.

- How to generalize a task ullet
- How to evaluate a reproduction attempt ullet
- How to better define the role of the user • during learning

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2.2. Why imitation learning? What is imitation learning?

Observation of multiple demonstrations

Reproduction of a generalized motion in a different situation

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING 2.3. Engineering approaches to PbD

The different types of representation to encode a skill

- a low-level representation of the skill, taking the form of a nonlinear mapping between sensory and motor information, which we will later refer to as *trajectories encoding*
- high-level representation of the skill that decomposes the skill in a sequence of action-perception units, which we will refer to as symbolic encoding

what to imitate, how to imitate, when to imitate and who to imitate : making no assumptions on the type of skills that may be transmitted

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2.4. How to evaluate a reproduction attempt

- Metric of imitation performance: extract the important features characterizing the skill
- An optimal controller to imitate by trying to minimize this metric *

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2.5. Symbolic Learning and Encoding of Skills

- **Segment and encode** the task according to sequences of >predefined actions
- **Encoding and regenerating (HMM)** \succ

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING 2.6. Gaussian Mixture Model and Regression

► We can model observed data X= (x,a) by a probabilistic density distribution P(X) = p(x,a)

Gaussian Mixture Models:

$$p(\boldsymbol{X}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{K} \pi_i \mathcal{N}(\boldsymbol{X}, \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

Multivariate Gaussian

$$\mathcal{N}(\boldsymbol{X},\boldsymbol{\mu},\,\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$

 μ is the mean Σ is the covariance matrix

► We can infer the robotic command \triangleright v= argmax_v p(v|x)

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2. IMITATION LEARNING 2.7. Beyond imitation learning

These early works highlighted the importance of providing a set of examples that the robot can use:

- by constraining the demonstrations to modalities that the robot can understand
- by providing a sufficient number of examples to achieve a desired generality.
- by providing examples representative enough of the all the situations
- By limiting the correspondence problems

2.7 Revend imitation learning

2.7. Beyond imitation learning

- sive the teacher an active role during learning
- the interaction aspect of the transfer process
- Social cues
- Pointing and gazing
- Vocal speech recognition
- Prosody of the speech

2. IMITATION LEARNING 2.7. Beyond imitation learning

PbD can be jointly used with other learning strategies to overcome some limitations of PbD

NGUYEN SAO MAI - LEARNING THROUGH INTERACTIONS WITH TUTORS AND THE ENVIRONMENT

2.7. BEYOND IMITATION LEARNING

Towards Machine Learning of Motor Skills in Robotics

Jan Peters

Intelligent Autonomous Systems Technische Universität Darmstadt

> Robot Learning Lab Max Planck Institute for Intelligent Systems

3:13

3. INTERACTION WITH THE ENVIRONMENT :

REINFORCEMENT LEARNING

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

ITH THE NMENT : ARNING

3.1. What is reinforcement learning?

- Agent-oriented learning—learning by interacting with an environment to achieve a goal
 - more realistic and ambitious than other kinds of machine learning
- Learning by trial and error, with only delayed evaluative feedback (**reward**)
 - the kind of machine learning most like natural learning
 - learning that can tell for itself when it is right or wrong
- The beginnings of a science of mind that is neither natural science nor applications technology

3.1. What is reinforcement learning?

EXAMPLE: HAJIME KIMURA'S RL ROBOTS

Before

After

New Robot, Same algorithm

3.2. Some Reinforcement Learning Successes

Learned the world's best player of Backgammon (Tesauro 1995) Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+) •Widely used in the placement and selection of advertisements and pages on the web (e.g., A-B tests)

- Used to make strategic decisions in *Jeopardy*! (IBM's Watson 2011) Achieved human-level performance on Atari games from pixel-level visual input, in conjunction with deep learning (Google Deepmind 2015) Google Deepmind's AlphaGo defeats the world Go champion, vastly improving over all previous programs (2016)
- In all these cases, performance was better than could be obtained by any other method, and was obtained without human instruction

3. REINFORCEMENT LEARNING 3.3. Definitions

- Agent seeks to maximize its cumulative reward on the long run
- Agent learns a policy mapping states to actions
- Environment may be unknown, nonlinear, stochastic and complex * and non-observable :

- Full observability : $S_t^a = S_t^o = O_t$
 - Partial observability: st^a is estimated by the environment

obtains an observation Ot

3.4. Policy and Value Function

- Policy π *
 - A policy is the agent behavior
 - Map from state to action
 - Deterministic : $a = \pi(s)$
 - Stochastic : $\pi(a|s) = P[A_t = a|S_t = s]$
- Value Function V
 - Prediction of future reward
 - Evaluates the goodness of states
 - Action selection using the value function
 - ♦ $v_{\pi}(s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + ... | S_t = s)$
- Q-Value Function Q
 - same as V but for each action : prediction of future reward
 - Evaluates the goodness of state-action pairs *
 - Action selection using the value function

3. REINFORCEMENT LEARNING 3.5. The Bellman equation

♦
$$V_{\pi}(s) = \mathbb{E}(R_{t+1} + \gamma R_{t+2} + ... | S_t = s)$$

- Optimal solution
 - Policy π^*
 - $V^*(s) = \max_{\pi} V_{\pi}(s)$
 - $Q^*(s,a) = \max_{\pi} Q_{\pi}(s,a)$

- Bellmann equation: for s,a,r and next state s' *
 - $V^{*}(s) = \max_{a} [R(s) + \gamma V^{*}(s') | s,a]$
 - $Q^*(s,a) = \mathbb{E} [R(s) + \gamma max_{a'}Q(s',a') | s,a]$
 - Bellman optimality equation expresses the fact that the value of a state under an optimal policy must equal the expected return for the best action from that state

3. REINFORCEMENT LEARNING 3.6. TD Prediction

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
                             target: an estimate of the return
```


3.6. TD Prediction

	Elapsed Tim	e Predictea
State	(minutes)	Time to G
leaving office, friday at 6	0	30
reach car, raining	5	35
exiting highway	20	15
2ndary road, behind truck	30	10
entering home street	40	3
arrive home	43	0
	45 Predicted total travel 35 time 35	acout
IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom	leaving read office car	th exiting 2ndary home arrive r highway road street home Situation

ctual tcome

3.6. TD Prediction

					k = 1			k = 2			
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
0.0		0.0	0.0			0.0	0.0	-0.004		0.0	0.0
	0.0	0.0	0.0	-0.004	0.0	0.0	0.0	-0.004	0.0	0.0	0.0

	<i>k</i> =	= 4		k = 5				k = 6			
	0.0	0.0	0.0	-0.007 924		0.0	0.0	-0.007 924	-0.004		0.0
-0.007 9924		0.0	0.0	-0.007 9924		0.0	0.0	-0.007 9924		0.0	0.0
-0.004	0.0	0.0	0.0	-0.004	0.0	0.0	0.0	-0.004	0.0	0.0	0.0

1		
$\boldsymbol{\nu}$	_	
n		

-0.007 924	-0.004	0.1	
-0.007 9924		0.0	0.0
-0.004	0.0	0.0	0.0

3.7. Sarsa: On-Policy TD Control

From state \mathbf{s}_{t} choose action \mathbf{a}_{t} , observe \mathbf{r}_{t+1} , \mathbf{s}_{t+1} , choose \mathbf{a}_{t+1} Update the state-action function Q(st,at) to update policy

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

3. REINFORCEMENT LEARNING 3.7 Q-Learning: Off-Policy TD Control

One-step Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) - Q(S_t, A_t) \Big]$$

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode): Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S';$

until S is terminal

$Q(S_t, A_t)$

$al-state, \cdot) = 0$ greedy)

3.8. On-policy/off-policy control

PRINCIPLES OF INTERACTIVE LEARNING Bibliography

Imitation learning

- Aude Billard, Sylvain Calinon, Rüdiger Dillmann, Stefan Schaal, Ch 59 Robot Programming by Demonstration in : Siciliano, Bruno, and Oussama Khatib, eds. Springer handbook of robotics. Springer, 2016.
- S. Calinon, A. Billard: What is the Teacher's Role in Robot Programming by Demonstration? - Toward Benchmarks for Improved Learning, Interact. Stud. 8(3), 441–464 (2007), Special Issue on Psychological Benchmarks in Human-Robot Interaction
- S. Calinon, F. Guenter, A. Billard: On Learning Representing and Generalizing a Task in a Humanoid Robot, IEEE Trans. Syst. Man Cybernet. 37(2), 286–298 (2007), Special issue on robot learning by observation, demonstration and imitation

Reinforcement learning

- R. S. Sutton and A. G. Barto. Reinforcement Learning: an introduction. MIT Press, 1998.
- https://mpatacchiola.github.io/blog/

Mai Nguyen - http://nguyensmai.free.fr

Bretagne - Pays de la Loire École Mines-Télécom

