
L. Nana 23/10/2019 1

Master of Computer Sciences 23/10/2019

Languages and programming

systems for robotics

 Introduction

 Requirements of robots programming

 Robots programming approaches

 Categories of programming languages

 Investigation of some systems /

programming languages ​​of robots.

L. Nana 23/10/2019 2

Master of Computer Sciences 23/10/2019

Introduction

 Proposition of languages ​​according to
the programming methods and
abstractions provided by the
architectures

L. Nana 23/10/2019 3

Master of Computer Sciences 23/10/2019

Requirements of robot

programming

 Detection

 World modelling

 Motion specification

 Control flow

 Programming environment

L. Nana 23/10/2019 4

Master of Computer Sciences 23/10/2019

Detection
 Use of position control without

detection in most early industrial
applications: World modelling
– Environment designed to eliminate all

significant sources of uncertainty.

– Significant investment in design and specific
equipment for each new application.

 The sensors make it possible to robots
to perform tasks in the presence of
significant environmental uncertainties
without the need for specific tools

L. Nana 23/10/2019 5

Master of Computer Sciences 23/10/2019

Main uses of sensors

 Launching and stopping of actions.

 Choice between different alternative

actions.

 Obtaining the identity and position of

objects and their supplies.

 Adaptation of the robot according to

the external constraints.

L. Nana 23/10/2019 6

Master of Computer Sciences 23/10/2019

Adaptive motion
 Active adaptation: Sensory interaction needed in

situations requiring continuous movement in
response to continuous sensory input.

 Operation specific to robotics.

 Difference in comparison to the first 3 uses of
detection: extensibility.

– Addition of new sensors and modules easy in the other
cases (semantics determined only by the user program).

– Strong integration between the sensor and the motion
control subsystem for adaptive motion.

L. Nana 23/10/2019 7

Master of Computer Sciences 23/10/2019

Programming mechanisms indirectly

linked to detection
 Target positions not known during programming:

possible to obtain from an external database or a

vision sensor or simply defined by bumping into

an object.

 Actual path to follow unknown at the time of

programming: can be determined from the history

of sensory inputs.

 Motion sequence unknown at the time of

programming: execution sequence determined by

the detection operations.

L. Nana 23/10/2019 8

Master of Computer Sciences 23/10/2019

World modelling

 The data manipulated by robotic programs are

primarily geometric.

 Need of means for :

– the representation of the positions and supplies of

objects such as surfaces and holes.

– facilitate the calculation on the position of the objects

and the configurations of the robot (representation of

matrices, various operations on the matrices, etc.).

– the description of the constraints existing between the

positions (for example for the displacement of rigid

objects.

L. Nana 23/10/2019 9

Master of Computer Sciences 23/10/2019

Example: grasping an object

 Need to specify the desired position of the robot

gripper relative to that of the object.

 Actual position of the object determined during

execution using a vision system or an online

database.

 Possibility of determining the position of the

gripper by composition between relative positions

of seizure and absolute position of the object.

 Transformation of this position into a

configuration of the robot.

L. Nana 23/10/2019 10

Master of Computer Sciences 23/10/2019

Motion specification
 Specification of final positions insufficient most of

the time (e.g. risk of collision)

=> Need to specify a path.

 Traditional approach:

– Indication of intermediate points between initial and
final positions.

– Choice of a shape of trajectory between the
intermediate points in a repertory of forms provided by
the control system (uncoordinated joint motions,
straight lines in the space of the coordinates of the
joints, straight lines in the Cartesian space).

– Each form represents a different compromise between
speed of execution and natural behavior.

L. Nana 23/10/2019 11

Master of Computer Sciences 23/10/2019

Motion specification (cont’d)
 Traditional approach :

– Non-uniqueness of correspondence « Cartesian
coordinates » – « joints coordinates ».

– Necessity of mechanisms, provided by the system, for
the choice among alternative solutions (the VAL
language provides for example a set of commands
allowing the user to choose 1 from a maximum of 7
solutions of joint coordinates at certain Cartesian
positions).

– Unsatisfactory approach for robots with infinite
families of solutions or for the specification of behavior
at a kinematic singularity (for example, very fine
control of velocity and shape of trajectory required in
the case of spray painting).

– Solution: provision of explicit trajectory control
commands (parameterized procedures, etc.).

L. Nana 23/10/2019 12

Master of Computer Sciences 23/10/2019

Control flow
 Need to be able to choose between several

alternative actions for sensor-based robots.

 Detection and error correction (need for IF-

THEN).

 Parallel executions.

 Need of mechanisms for the cooperation of

robots (for example two robots that have to

lift a load).

 Taking into account real time constraints .

L. Nana 23/10/2019 13

Master of Computer Sciences 23/10/2019

Programming support

 Specificities of robotic programs:

– Frequent access to external data.

– Frequent Solicitation of users for corrective data or actions.

– Production of statistical reports.

 Characteristics deserving special treatment :

– Complex side effects and usually long run times
 Re-initialization difficult in case of failure.

 Need to allow online modification and restart.

 Non repetitiveness of sensory information and of real-time
interactions

=> Need to record the traces of sensors same time as the program for
debugging purposes.

– Difficulty of visualization of geometry and complex motions

=> Major role of simulators for debugging.

L. Nana 23/10/2019 14

Master of Computer Sciences 23/10/2019

Robots programming

approaches
 3 approaches :

– Guiding : the user guides the robot through the

motion to perform.

– Robot level programming : the user writes the

computer program specifying motion and

sensing.

– Task level programming : the user specifies the

operations by the effect he wishes they have on

the objects.

L. Nana 23/10/2019 15

Master of Computer Sciences 23/10/2019

Guiding
 The oldest approach and the most spread.

 Manual displacement of the robot to each desired
position and storing coordinates of the joints for
this position: operations such as object grasping
possible at the position reached.

 Program : sequence of vectors of coordinates of
joints + activation signals for the external
equipments.

 Execution by displacement of the robot to the
specified positions and generation of indicated
signals.

 Method known as « teach by demonstration ».

L. Nana 23/10/2019 16

Master of Computer Sciences 23/10/2019

Guiding: advantages and

drawbacks
 Simple to use and to implement.

 Some limitations, in particular with respect to the
use of sensors : the programmer specifies a unique
sequence of execution for the robot (no loop,
conditional, nor iteration instruction).

 Adapted for applications such as painting and
management of simple materials.

 Not adapted for applications such as mechanical
assembling or inspection where one needs to
realize an action depending on the values obtained
from sensors or from some data or from results of
computations.

L. Nana 23/10/2019 17

Master of Computer Sciences 23/10/2019

Robot level programming
 “robot level” programming languages incorporate

commands to access sensor values ​​and specify robot

motions.

 Advantages :

– Allow the use of data from external sensors (vision, force, etc.) to

change the robot's motions.

– Extends the scope of application of robots: they can face a greater

degree of uncertainty..

 Main problem : require some expertise in computer

programming and design of sensor-based motion strategies

 Inaccessible to the typical worker of the factory.

 Different works were carried out to extend the basic philosophy of

guiding to include decision-making based on the value of the

sensors.

L. Nana 23/10/2019 18

Master of Computer Sciences 23/10/2019

Task level programming
 Specification of the objectives for the

positions of the objects rather than the
movements of the robot necessary to
achieve these objectives.

 A specification at the task level is
particularly supposed to be independent of
the robot.

 Requires complete geometric models of the
environment and the robot as input.

 Referenced as systems based on models of
the world.

L. Nana 23/10/2019 19

Master of Computer Sciences 23/10/2019

Categories of robotics

programming languages

 3 design approaches:

– Extension of general purpose languages.

– Creation of domain specific languages.

– Modification of control languages.

L. Nana 23/10/2019 20

Master of Computer Sciences 23/10/2019

Extension of general purpose

languages
 Widespread use.

 Requires a certain power of expression.

 Creation of libraries dedicated to robotics.

 Advantages :

– Possibility to use the same language at the different
levels of the application.

– Reduction of development load.

 Drawbacks :

– Not adequate on the point of view of ease of
specification and determinism of execution for complex
robotic applications.

L. Nana 23/10/2019 21

Master of Computer Sciences 23/10/2019

Example of extension : RCCL

 Collection of robot control routines provided as a C library.

 Has been successful since its delivery in 1983: Use by Jet
Propulsion Laboratories, RCA Advanced Technology Labs
and NASA Goddard Space Flight Center: Demonstration
of the tasks required to maintain an Orbital Space Station.

 Offers facilities for:

– The management of useful types such as 3D coordinate vectors,
functions for coordinate transformation and coordinates system
change.

– Specify motions in the operating space or into the articular space
of the robot.

– Parameter motions (speed or execution time) and trajectory
generator.

– Synchronize the movements of several manipulators.

L. Nana 23/10/2019 22

Master of Computer Sciences 23/10/2019

Example of extension (cont’d)

 ESL: extension of LISP, proposed by E. Gatt, mainly
concerning :

– task management with different synchronization possibilities.

– Procedures for error recovery.

– Goal management and how to achieve them.

– The management of shared resources .

– A small logical database (management of a global basis of
assertions).

 LOGO:

– Lisp very modified.

– Has been used by MIT's AI laboratory and its Research-Education
Unit.

– Possibility of interfacing between Lego kits and LOGO on PC.

L. Nana 23/10/2019 23

Master of Computer Sciences 23/10/2019

Creation of domain specific languages

 Domain specific languages : dedicated to
programming of a field or a particular problem.

 Multiple interests :

– Are closer to a specification language: while remaining
executable, they hide the details of implementation.

– Capture better the semantics of their domain and thus
produce clearer and more concise programs.

– Their semantic is often clear due to their limited
expressivity.

 Drawbacks:

– Are less expressive than general purpose languages and
do not allow manipulation of complex data structures.

– Low extensibility: difficult to adapt to a larger
application domain.

L. Nana 23/10/2019 24

Master of Computer Sciences 23/10/2019

Domain specific language examples

 KAREL:
– Simple robotic programming language, initially intended for the

teaching of classical computer programming.

– Used by many students since 1981.

– Structured in blocks as PASCAL language.

– Supplies: position variables, speed control, motion control, input
detection, output control.

– First version used for simulated robots, but version of 1995 used
for real robots in the laboratory. .

 VAL-2:
– Extension of KAREL.

– Interesting supply : fine motion production.

– Possibility for the input sensors, to modify the motion of the
controlled component (interest for example for clamping
operations).

 Others : AML (A Manufacturing Language), …

L. Nana 23/10/2019 25

Master of Computer Sciences 23/10/2019

Modification of control languages

 Control languages have an expressiveness closer
to mission programming because they have been
designed for parallel and responsive programming.

 Examples of control languages :
– Synchronous languages ​​data flows : LUSTER, SIGNAL, ...

– Synchronous graphic languages: ARGOS, STATECHARTS,
SYNCCHARTS, GRAFCET, ...

– Textual control languages: ESTEREL.

– Non-graphic asynchronous languages: ELECTRE, ...

– Graphical asynchronous languages: Petri nets, etc. .

 Advantage: rigorously defined semantics and
availability of simulation and / or verification and
/ or analysis tools.

 Drawback : requires greater expertise.

L. Nana 23/10/2019 26

Master of Computer Sciences 23/10/2019

Examples of modification of control

languages

 ESTEREL execution machine implemented

in ORCCAD applications: Formalization, in

the form of signals, of the dialogue between

the controlled process (robotic actions) and

the reactive controller.

=> Illustrates the need for adaptation.

L. Nana 23/10/2019 27

Master of Computer Sciences 23/10/2019

Criteria for an ideal missions

programming language

 Applicability of formal verification and analysis
methods.

 Good expressiveness : basic control structures +
structures for parallel and reactive programming.

 Intuitive programming of the control of
applications, for example, graphical formalisms.

 Programming at robot task level.

 Good compromise between extensibility and
specialization.

 Integration of operator intervention capabilities.

 Possibility to modify programs online.

L. Nana 23/10/2019 28

Master of Computer Sciences 23/10/2019

Investigation of some robot

programming systems

 Guiding :

– Extended guiding.

– Offline guiding.

 Robot level programming.

 Task level programming.

L. Nana 23/10/2019 29

Master of Computer Sciences 23/10/2019

Extended guiding
 Guiding system of ASEA robot:

• Taking simple forms of detection

into account (guarded motion, ...).

• Provision of simple control

structures, for example transfer of

control at different points in the

sequence taught.

• ASEA supports conditional

branching and simple forms of

procedures.

• The programmer can exploit these

opportunities to produce more

compact programs.

L. Nana 23/10/2019 30

Master of Computer Sciences 23/10/2019

Program of the task
10 OUTPUT ON 17 Flag « ON » => take

20 PATTERN Beginning of procedure

30 TEST JUMP 17 Ignore this instruction if « ON »

40 JUMP 170

50 OUTPUT OFF 17 Next time put down

60 … Operation « take»

100 MOD End of code of operation « take »

110 … Positioning for first pick up

130 MOD Execute the procedure

140 … Positioning for second pick up

160 MOD Execute the procedure

170 … Machining and deposit

200 OUTPUT ON 17 Next time « take»

210 MOD End of code of operation « deposit »

220 … Positioning for first deposit

230 MOD Execute procedure

240 … Positioning for second deposit

L. Nana 23/10/2019 31

Master of Computer Sciences 23/10/2019

Offline guiding

 Use of a model of the task and a model of the

robot.

 Simulation of robot movements in response to a

program or guide input from a “guided teaching”.

 Advantage: flexibility and safety + possibility to

experiment different configurations to find the

most suitable (for example, minimal execution

time).

L. Nana 23/10/2019 32

Master of Computer Sciences 23/10/2019

Robot level programming
 MHI (Mechanical Hand Interpreter) is the first “robot

level” programming language.

 Designed for one of the first computer-controlled robots,
the MH-1 at MIT

 Programming style centered around motions with guard.

 Primitives of the language:

– Move: indicates a direction and a speed

– Until: tests a sensor against a specified condition.

– Ifgoto: jump to a label if a certain condition is detected.

– ifcontinue: branch to the continuation of the action if a certain
condition is satisfied. .

 Did not support arithmetic control structures or other
control structures beyond sensor control.

L. Nana 23/10/2019 33

Master of Computer Sciences 23/10/2019

The PILOT Research project

 Context :
– Craft programming of robots.

– High development cost, without any warranty of missions success.

 Problematic: make the programming of robots or
intelligent machines (autonomous or teleoperated) easier
and more secure.

 Different works within our laboratory (Lab-STICC – UMR
CNRS 6285, formerly LIMI/EA3883):

– YALTA : Yet Another Language for Telerobotics Applications (thèse de J-
C. Paoletti, 1991).

– PILOT: un langage pour la télérobotique (thèse E. Le Rest, 1996).

– Vers une méthodologie de programmation d’un système de télérobotique :
comparaison des approches PILOT et Grafcet (thèse J.L. Fleureau, 1998).

– Safety aspects of applications.

– Verification of temporal properties : application of the results of the
project « Distributed real time scheduling ».

 Test platforms: VESA II, MARC’H (BMO grant).

L. Nana 23/10/2019 34

Master of Computer Sciences 23/10/2019

PILOT language
 Graphical, interpreted language, based on

the notion of action.

 An action is an object that comprises :

– A name,

– A type,

– A precondition,

– Supervising rules.

 Control structures :

– Classical : sequentiality, conditional, iteration.

– Parallel programming : parallelism,
preemption.

L. Nana 23/10/2019 35

Master of Computer Sciences 23/10/2019

Actions and operators of PILOT language

Forward(3)

Elementary action

Flashing

Continuous

action

Turn(3)

Preemption

Forward(3) Turn(45) C1

Forward(5) Turn(10) C2

?

Conditional

Forward(3) Turn(45) 4

Fix iteration

Forward(3) Turn(45) C

Conditional iteration

Forward(3) Turn(45)

Sequentiality

Forward(5)

Flashing

Parallelism

L. Nana 23/10/2019 36

Master of Computer Sciences 23/10/2019

Software architecture of PILOT

GU Interface Generator

Interpreter

Evaluator

Server

Execution
module

Plan

Actions

System DB

OPERATOR

ROBOT

L. Nana 23/10/2019 37

Master of Computer Sciences 23/10/2019

Functioning on user side

 Main window

 Creation and modification of actions

 Edition of plans

 Execution of plans

L. Nana 23/10/2019 38

Master of Computer Sciences 23/10/2019

Main window

L. Nana 23/10/2019 39

Master of Computer Sciences 23/10/2019

File Menu

L. Nana 23/10/2019 40

Master of Computer Sciences 23/10/2019

Build Menu

L. Nana 23/10/2019 41

Master of Computer Sciences 23/10/2019

Action Menu

L. Nana 23/10/2019 42

Master of Computer Sciences 23/10/2019

Creation and modification of

actions

L. Nana 23/10/2019 43

Master of Computer Sciences 23/10/2019

End-to-end behavior of Pilot control

system
 Plan used for illustration

 Assumptions :
– Plan execution has already been launched.

– The plan is not modified during its execution.

– Preconditions :
 Tempo : NOT timer_on

 Gyro: NOT ligth_on

– Supervising rules (only one for each action):
 Tempo : NOT timer_on

 Gyro: NOT light_on

Tempo

Gyro

L. Nana 23/10/2019 44

Master of Computer Sciences 23/10/2019

Description of the behavior
 HMI : send message Start_Execution to interpreter.

 Interpreter :
– Starts interprétation upon reception.

– Interpretation of the beginning node of the sequence : boils down
to the interpretation of the following node => interpretation of the
parallel structure.

– Allocation of a END_BOX structure

– Storage of the start and end of sequence pointers of the parallel structure
in the latter.

 Sequential analysis of the first elements following the beginnings of
internal sequences, ie tempo then gyro analysis.

 Allocation of a cell for tempo and positioning of its fields (locked ,
Elementary Action type, precondition request state, synchronization,
pointer on END_BOX, ...).

 Similar allocation for Gyro.

 Interpreter : sending requests for evaluation of pre-
conditions of tempo and gyro to the evaluator and waiting
on message queue.

 HMI : update of the status of the actions.

L. Nana 23/10/2019 45

Master of Computer Sciences 23/10/2019

Description (cont’d)
 Evaluator :

– After receiving the request, reads and evaluates the

preconditions of tempo and gyro.

– Sends message PRECONDITION_ACCEPTED

(assuming that pre conditions are satisfied) to the

interpreter for each action.

 Interpreter :

– After receiving the message, sends message

START_ACTION to both EVALUATOR and

EXECUTION modules.

– Positions the state of actions to

ACTION_LAUNCHED.

 HMI : graphic update of actions’ state.

L. Nana 23/10/2019 46

Master of Computer Sciences 23/10/2019

Description (cont’d)
 Execution : sends orders of execution of tempo

and gyro to the robot.

 Evaluator : Positions the state of actions tempo

and gyro to Ongoing and starts evaluation of

monitoring rules.

 Robot :
– Triggers the « timer » for the specified duration and turns on the

flashing light.

– When the duration expires, sends information « tempo action

completed » to the execution module.

 Execution:
– Gets sensors information from the robot, including those related to

the timer and the flashing light (timer_on, gyro_on) and stores it

into shared memory.

– Same for information on the action tempo.

L. Nana 23/10/2019 47

Master of Computer Sciences 23/10/2019

Description (cont’d)

 Evaluator:
– Detects the end of the action « tempo » and positions its state to

« completed »,

– Stops the evaluation of corresponding monitoring rules.

– Sends message ACTION_COMPLETED to the interpreter.

 Interpreter :
– Positions action « tempo » to COMPLETED => graphical update

by the HMI.

– Starts interpretation of the next primitive i.e « end of sequence »
=> call of the termination detection algorithm that looks for the
direct primitive englobing the end of sequence, i.e the parallel box,
and examines the corresponding END_BOX in order to verify if
the condition of end of parallel execution is satisfied.

– End of parallel execution is detected => sends a message
STOP_ACTION to the evaluator and to the execution module for
the action « gyro », and positions the state of the action « gyro » to
COMPLETED => graphical update is done by the HMI.

L. Nana 23/10/2019 48

Master of Computer Sciences 23/10/2019

Description (cont’d and end)

 Evaluator : positions the action « gyro » to

STOPPED and stops the evaluation of its

monitoring rules.

 Execution : sends stop order for the

action « gyro » to the robot which stops the

flashing light.

 Interpreter :
– Analyses the node that follows the parallel box, i.e the end of the

main sequence => the termination detection algorithm is called

again and detects the end of the mission.

– Sends the message MISSION_COMPLETED to the other modules

and all these modules prepare themselves for the execution of the

next mission or for the end of the application.

