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Autonomous
systems

e Mars Rover
e Drones
e \oilier robot

Medical

e Robot chirurgien

e Stimulateur cardiac
GEESUELED)

Aero-space

e Flight control
system

e Landing gear
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Why do we need formal techniques?

* Quality
e Safety = human lifes
e Security = access control; online banks
* Legal = electronical signature

* Productivity
* Early error detection
* Re-use
* Test generation
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But we are testing...

* Execute the system with a predefined set of inputs and observe the outputs
 Random inputs -> coverage problems
* Smart inputs -> high cost
e Automatically choosen smart inputs -> need of formal models

 What does it means execute for a plane ?
* What can we say about the inputs that were not tested ?
* How do we observe ? Oracle...

* The formal methods do help
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Proof and techniques

Test [Angle bisection — Ancient Greece]

e Proves the existence of given situations

Proof [Angle trisection Pierre Wantzel in 1837]

e Proves the absence of given situations

Proof techniques

e Statical analysis: type-checking
e Proof assistants: equivalences
* Model-checking : exhaustive analysis (counter-example proof).
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Formal verification : Model-Checking
System
o Specification
)
satisfies =

SPECS
a

~—

Abstraction

Properties
satisfies -
Props
T —

A
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Towards formal methods

{System, Hypotheses, Domain Laws} |= Requirements

Necessary conditions :

The system satisfies the requirements if and only if:
* The hypotheses are satisfied by the real environment
* The domain laws are true
* The preceeding elements are consistents
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Model-checking

|dea : Exhaustive search of a counter-example

{Requirements, Hypotheses, Domain Laws} |= Spec

\ \ - i \Wf/

Design under study (DUS) Environment Properties

{ DUS| | Environment} | = Properties

\

Model




Formal verification of critical systems:
Complexity race

* Bigger systems vs more powerful verification techniques

* Model-checking:

Disadvantages

intuitive State-space explosion
generic Manual model reduction
automated Temporal logics

counter-examples
POR, SR, BMC, etc.
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Industrial Challenges

 Notations

e Requirements (Doors, Doc)
* Models (UML, AADL, SDL)

* Tools
* Model-checkers
e Other formal analysis tools

* Problems, Solutions et Questions
* Requirements
* Environment (the model should be closed 4 verification)
e System model
e Abstraction & Modular Decomposition
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The Rise and Fall of LTL Vardi, 2011

[https://youtu.be/AygOV1gilwc]

* 1928 — First order logic decidable ? ‘36 — No, but some fragments Yes
* The declarative “logic” is connected to the imperative “machine” (automaton)

e '57-58 [Buchi, Elgot, Trakhtenbrot] proved finite MSO = NFA = DFA = RegExp,
* ‘59 NFA complementation is hard, '78 & ’93 2" upper bound, L(A)#Z linear in size A
e 74 finite words MSO non-elementary satisfiability

* ‘60 [Buchi] MSO = Buchi = w-Reg; ‘60 [Church] Model-checking is decidable
e '54,’57 [Prior] linear & modal logic; 58 [Kripke ] branching time.

* Linear time = a set of linear trace vs Branching time = a trace tree

e ‘77 [Pnueli] LTL for program specification, model-checking via automata
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The Rise and Fall of LTL Vardi, 2011

[https://youtu.be/AygOV1gilwc]

‘79, ‘80 Expresity : LTL = FO = star-free w-RE < MSO = w-RE
81, '82 LTL satisfiability is PSPACE-complete vs FO which is non-elementary

’85 Past LTL : expressivity & satisfiability PLTL = LTL but PLTL exponentially more
succinct than LTL (shorter phrases)

’83, ‘89 ETL (LTL + automata) = uTL (LTL + fixpoints) = MSO

‘98, ’01 @ IBM : TCTL & Sugar — branching time logics

‘90 -’00 @ Intel : LTL & RETL & ForSpec — linear time logics (RETL LTL + RegExp)
’00 : PSL industrial standard = LTL + RexExp + branching + clocks + resets

11 [Vardi] : Linear dynamic logic : linear time, LDL = MSO, RegExp + Past + dynamic
modalities, exponentially more succinct than RETL

Open question : Whats next ?
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Property Specification Language: Great success

e Textual requirement :

* "every request which is immediately followed by

an ack signal, should be followed by a
, where a IS @ sequence

starting with signal start, ending with signal end in
which busy holds at the meantime"

* PSL property :
*(true[*]; req; ack) |=> (start; busy[*]; end)
*But : Is it readable ?
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Property patterns

SYST-DP-REQ-6-1: During initialization procedure, the SYS shall

associate an identifier to NC console (IHM), before dmax time units.

An exactly one occurrence of
eventually leads-to | [

All combined
exactly one occurrence of
exactly one occurrence of

may never occur
one of cannot occur before the first one of
one of cannot occur before the first one of
repeatability: true

AFADI’10

[ Dwyer] + [Cheng] + [Smith]

[send 1] [send 2]

[send 2]

[send 1] Y [send 2]

ck > dmax

ck > dmax [ck > dmax]

Response, Precedence, Absence, Existence,
Pre-arity, Post-arity, Immediacy, Precedence,
Nullity, Repegtabilit
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Industrial Challenges

* Notations [OK]

e Requirements (Doors, Doc)
* Models (UML, AADL, SDL)

e Tools [OK]

* Model-checkers
e Other formal analysis tools

* Problems, Solutions et Questions
* Requirements
* Environment (the model should be closed 4 verification)
e System model
* Abstraction & Modular Decomposition
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Context-aware Verification

* Clear separation between the system and the environment
* Extraction of verification guides from the environment model

* Properties + verification guides = verification context
* The verification guides are acyclic interaction scenarios

* Reduction axes:
Decomposition through contexts: ex. operating modes
Environment-guided analysis

* Complementarity with traditional reduction techniques: POR, SR
g% ENSTA
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Context decomposition: ex. operating modes

SYST-DP-REQ-6
During initialization procedure, the SYST _DP shall associate a
generic equipment identifiers to one or several role in the system
(MainSensor, OtherSensor, IFF, Actuator, ...). It shall also associate
an identifier to each console.
The SYST_DP shall send an evtEquipmentRole message, in
preparation mode, for each connected generic equipment, to
each connected console.
Initialization procedure shall end successfully, when the SYST _DP
has set all the generic equipment identifiers and all console
identifiers and all evtEquipmentRole message have been sent.
End
3 different verification contexts
SYST-DP-REQ-2
Once initialization is achieved, the SYST _DP shall send to each
console an evtCurrentMission with curMission set to IDLE, to set
current mission to idle, followed by an evtCurrentActivity with
curActivity to LOGIN and status to TRUE to activate login.
End
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CaV: Selection of Verification Guides

AS

SZ { System model }
J L

XA




Verification Guide Syntax & Semantics
cGu=a|CGC|C[lC|C||Cc|C?|C+|C*|Ciij}]|{ijof[Cy, .., Cl

" a€ At a€ At C1 3 CIANC1#a ‘
N = [atom] ” [seqi] a [seqa]
Q . a— L a;C = C C1;Cy — C1;Cy
> :
¢ X C, %0
NS - [alty] - [alty)] -— — [par]
&~ O@ c,0C, 5 ¢, C,0C, 5 C, C1[|C2 % CL||Co
(J a ! . °
& @ Cy > Cy  (par,] _ [pars] _ [parg] Similar to RegExp
bO 2 Ci||Cy 2 C,||Ch LjcS e CclLSC
* O
- opt = star = plus
§b Cc?— 10C v Cx — (C;C%)? star C+ — C;Cx plus|
e 0<i<j i=0Aj>0 i=j=0
a S ocio Lo el o o T, Pl o [repsl
{Z,]}—)C,C{Z—l,]—l} C{Z,]}%(C,C{O,]—l}). O{Za]}_)-l-
Specification xGDL ——-»{ NFA ———->»{ DFA -——->»{ DFA minimise —> Guide de veérification
3
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CaV: Recursive Scenario Decomposition (split)

Fail
SUS B/i\D
N
SPLIT
Fai - n—
sus B/ sus SUS \‘D
» : :
SPLIT |
sus B‘/ sus B/
i \

eeeeeeee
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Partially-Bounded Model Checking

How can we get an acyclic verification guide ?

o—>» (0 —>» 1 —>» 2 ——» 3 ——>» 4 —>» 5

(a1; ap) * || (f10L1f2) 5 step unrolling
Cyclic acyclic

3
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Case-study 1: Cruise Contr;oIMSystem

Driver
AN

i CcCs 406 106 511
ParI ! .

I P I SetS F::Iar I

owerOn etSpee

I PowerOff >I I - »I

I >| ncSpeed >I

| CaptureSpeed q | DecSpeed > |

| R.esume > |

Disengage > | < CurrentSpeed

l IncSpeed ! I

| Decspeed q | 186 383 052

I l

|
— ——— — L
- v
4925341 [
B
B

, Traditional Reachability PastFree[ze] PastFree[ze] + Automatic
MEDI'14 gyensa  Splitting
NI r n




Case-study 2: Landing Gear System
Towards the cockpit ‘

Digital part

From discrete sensors

: door closed / not closed LG S

door open / not open .

3 gear retracted / not retracted P t Pe rt
gear extended / not extended

ator

I“ A A A A

V_ General electro-valve par handle I

I
Analog switch % < Aircraft hydraulic circuit ! il : :
I
I

iscrete sensor (pressure OK / not OK
o b ) | handle |
Close electro-valve e e e n e m e e
retraction circuit I w
R .I. ----------------------------------------------- I 'R
|

Open electro-valve

extension circuit

Retract electro-valve Front Right Left

retraction circuit

Orders to electro-valves
E@ Xﬁl

Gos STTT’15
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Extend electro-valve

extension circuit

X‘ﬁ
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r o Failure-free state-space
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Failure: Electro-valve blocked open

100X bigger state-space

N/) g
@ Bretagne



Traditional reachability: 1 Failure

1E+08

1E+07

1E+06

B # states —Explosion limit on L64 (traditionad,;e;chability)

7

1E+05 -

1E+04 -

1E+03 -

asboF asbcF gboF gbcF deboFdebcF drboF drbcF geboF gebcF grboF grbcF fdF  fgF

3 Pilot Interactions + 1 Failure on 64 GB RAM




Traditional reachability + SPLIT: 1 Failure

1E+08 Bl i states —Explosion limit on L64 (traditional reachability)
1E+07
1E+06
1E+05
1E+04 -
1E+03 T T
gebcF  gebcF  gebcF  gebcF grbcF grbcF grbcF grbcF
1/4 2/4 3/4 4/4 1/4 2/4 3/4 4/4

3 Pilot Interactions + 1 Failure on 64 GB RAM
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2 Failures — PastFree|ze]

Reachability

Explosion limit on L64 (PastFree[ze])

%)
()
——
@©
p—
n
H:
I
I
I
I
|
I
|
r T T 1
o) o) N~ © T}
S o o o o
¥ ¥ ¥ ¥ ¥
1] L L L (1]
b hal el b ~

E Percentage of states freed with PastFree[ze]

ghc

ghoF

asbcF

asboF
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Context-aware Verification: Completeness

e CaV is not complete (not exhaustive)

e some states remain undiscovered (e.g. the states unraveled by a longer acyclic
verification guide — 6-steps unrolling)

* A completeness bound should be proved. This is very difficult.
* Can this completeness bound be proved automatically ?

Yes, using PastFree[ze] in some LGS cases

fd | fg
20|20

grbo
18

lasbo|asbc|gbo|gbc|debo|debe|drbo|drbe|gebo
bguide| 16 | 16 |18 | 17| 20 | 20 | 18 | 20 | 20

Open question : In which cases can the proof be automated ? In general ?
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Industrial Challenges

 Notations

e Requirements (Doors, Doc)
* Models (UML, AADL, SDL)

* Tools
* Model-checkers
e Other formal analysis tools

* Problems, Solutions et Questions
* Requirements
* Environment (the model should be closed 4 verification)
e System model
* Abstraction & Modular Decomposition
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DSL-based Diagnosis 4 Critical Systems

Requirements

Accidental complexity

High-level toolbox:
, * Prover <

4

* Simulator/Debugger
e Profiler

Semantic gap

Low-level toolbox:
, * Simulator/Debugger
* Profiler

* Exec. Monitors Py
wev{Platform}




DSL-based Critical System Infrastructure

Requirements

Semantic gap

»
»

Missing toolbox problem

High-level toolbox:

* Prover
* Simulator/Debugger
* Profiler

A

statecharts

Equivalence problem

Low-level toolbox:

, * Simulator/Debugger
* Profiler
* Exec. Monitors

A
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Model-checking scalability with Context-aware Verification

DDASCA - Explicit verification guides
:4\ DEPARTS - Dedicated algos : Split, PastFree[ze], Folding

- Realistic case studies

DSL-based Critical System Infrastructure UML Statechart - Fiacre
AEFD¢y s =2 Fiacre

Fiacre with embedded Scade

Requirements

Missing toolbox problem statecharts

High-level toolbox:
* Prover
* Simulator/Debugger
* Profiler

Equivalerice problem New language : ABCD

ABCD

Semantic gap

Low-level toolbox:
* Simulator/Debugger
+ Profiler

+ Exec. Monitors

{Platform}
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DSL-based Critical System Infrastructure

Requirements

Diagnosis Toolbox:
High-level B Prover

DSL

. * Simulator/Debugger <
properties * Profiler

* Exec. Monitors

Missing toolbox problem

.

Nk

v{Platform}




The Problem: How to make the connection ?

Domain-specific diagnosis €= === = —p | gnguage workbenches

Chj. : 1515
Moldable debugger % s, Gemoc studio J
]5/
K
. 5/0 0[‘581_
DSProfile —¢eg P16 | Spoofax =2 Uo |
/?6’55/' .
MetaSpy etal o, /by
2} MPS ™y
A
ITSMin a7 o
IN 14C45/]5/ SU et 4

LA p-
K Framework—""7 |

sw
S £ 39



The Problem: Requirements

Domain-specific diagnosis Language workbenches

DSL monitoring

Completeness Portability
Non-Interference DSL Runtime Integration
Genericity Tool Integration
Composability Minimize the Gap
Unanticipated Monitoring Break the Rules
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Object-Oriented Design Pattern for DSL
Program Monitoring

Standard Interpreter Composition Monitor Specification
original i
Element g—<> Decorator Annotation
accept(visitor: IVisitor<T>): T <}——— accept(visitor: IVisitor<T>): T link annotation
syntax
\
<<Interface>> <<Interface>> MonitorLink
IVisitor<T> < IDecoratorVisitor<T>
pre(n: Element, s: EvaluatorState)
— — post(n: Element, v: Value, s: EvaluatorState)
visit(hode: Element): T visit(hode: Decorator): T
link A A
___________ e — — - — — — — —————————f——————————
EvaluatorState || | MonitorState
I |
tat I <<bind>> ! <<bind>> o
state _ state
l I T->Value ! T -> Value i monitor
| |
Evaluator MonitoringEvaluator Monitor
. . \' . . -
visit(node: Element): Value visit(node: Decorator): Value pre(a: Annotation, n: Element, s: EvaluatorState)
post(a: Annotation, n: Element, v: Value, s: EvaluatorState)
semantics

N
W
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Steps towards integration:
Observation & Control: Object-Oriented Monitoring Pattern

[RO1] Completeness [RO6] Portability

[RO2] Non-Interference [RO7] DSL Runtime Integration
[RO3] Genericity [RO&] Tool Integration

[RO4] Composability Minimize the Gap

[RO5] Unanticipated Monitoring  [R10] Break the Rules

But only a pattern — no framework / no tools yet

3
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Industrial Challenges

 Notations

e Requirements (Doors, Doc)
* Models (UML, AADL, SDL)

* Tools
* Model-checkers
e Other formal analysis tools

* Problems, Solutions et Questions
* Requirements
* Environment (the model should be closed 4 verification)
e System model
* Abstraction & Modular Decomposition
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A standard control loop

Control Algorithms Where do we start ?
Set Points,
l Controller |e——
Actuators Sensors
Controlled Measured
Variables Variables

—>

Controlled Process

l

Disturbances

Process Inputs ——» ——» Process Outputs
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Steps towards integration:
Raffinement vs Abstraction

A

= Process

c <

; J model

5 f

2 Sensor Controller Actuator

0 —

model model model

& A I A

9

wn

& o . |

abstraction | Full refinement abstraction

| |
I v

5 sensor 1 b Eai s » actuators

g | On RealTime OS

process -«

>
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= " : HO
Steps towards integration: Wdo,,
Raffinement vs Abstraction Wae,,, "™Ment ,, e
0 S
2 o 9o We g tr, aACtjo
e 40% rrocess arg> 2oh?
C ) Q < —l °
< O q© model o
ogo 00&0((\0 l 1 0@\, 0\)&0((\0 ‘
\ \
2 A model | model A model
2 1 t
K abstraction I Interface refinement abstraction
\ 4
£ I UML model
2 sensor | . » actuators
2 on UML runtime <
7 | R
@\e“‘\/(\//
_ process - ®
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Steps towards integration:
Raffinement vs Abstraction

/S'(/
; O’o

¢

o/
<0,
= Process v4
c
<
» J mofdel
&

@ Sensor Controller Actuator
—
()
c model | model model]
2 1 t
& I . |
abstraction | refinement abstraction
I \ 4
§ sensor | » Controler on RTOS » actuators
U>). I |

Works with Event-B formalism.
) What about timed automata ?

ST



Industrial Challenges

 Notations

e Requirements (Doors, Doc)
* Models (UML, AADL, SDL)

* Tools
* Model-checkers
e Other formal analysis tools

* Problems, Solutions et Questions
* Requirements
* Environment (the model should be closed 4 verification)
e System model
e Abstraction & Modular Decomposition
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Assume Guarantee Reasoning

—m I = P Yes-Cobleigh et al. 2003

(Premise1l) M; E true © g4
(Premise2) M, = g, ©P

Can we verify M1 My | Mz & P

independently of M2 ?
e ——— gl is an abstraction of M1

We can compute it automatically.

2
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Circular Assume Guarantee Reasoning

Yes — Elkader et al. 2015
IVI 1 m = .
- I P (Premise 1) M; = g2 D> g1

(Premise 2) Mo

— g1 P g2

(Premise 3) g1]|ga |= P

Can we verify M1
independently of M2 ?
What are M1 & M2 ?

M;||Ms = P

gl & g2 are abstractions of M1 & M2.

We can compute them automatically.

2
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N-Way Circular Assume Guarantee Reasoning

= P

Can we verify each M.
independently the others?
M. naturally maps to processes.s

Yes — Elkader et al. 2016

(Premise 1) M; EGi>g;
(Premise 2) My = G go

(Premisen) M, FG,P> g,
(Premise n+1) G,41 = P

M, [[M3][- - [M,, = P

G S G-{g}fori<n+1,
gi are abstractions,
compute them automatically

3
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N-Way Circular Assume Guarantee Reasoning

* Limitations / Open questions :

* The « g; » abstractions are computed using SAT.
* |s there an better/specialized algorithm ?
 What is the algorithmic complexity ?

* Each component is developed independently under some assumptions.
e Can we integrate these « development assumptions » in the approach ?
 Doesithelp?

* This N-Way Circular Reasoning is limited to safety properties.
* Can this approach handle liveness properties ?
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Questions ?

Happy research career !



