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1. WHAT DOES INTERACTIVE LEARNING MEAN? 
1.1. The Artificial Agent in Its Environment 
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1. WHAT DOES INTERACTIVE LEARNING MEAN? 
1.2. Challenges 

•  Vocal interaction: speech 
recognition, speech generation (text-
to-speech) 

•  Natural interaction : multi-modal, 
non-verbal interaction, gesture, 
expressive emotion-based 
interaction 

•  Socio-cognitive skills : socially 
acceptable behaviours, turn-taking, 
coordination, theory of mind 

•  Physical interaction : touch (tactile 
sensors), grasping, manipulation 
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1. WHAT DOES INTERACTIVE LEARNING MEAN? 
1.3. Theoretical approaches 

•  Embodiment : the 
environment has a physical 
incarnation, the agent has a 
physical incarnation => its 
learning, capacities, 
behaviour depends on its 
physical body 

•  Enactivism : Learning of the 
agent in its environment 

•  Life-long learning : the 
environment and tasks can 
change 
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•  Developmental 
approaches : there is an 
orderly way to learn multiple 
tasks, the learning is 
progressive and hierarchical 
-> Developmental 
psychology 

•  Cognitive approaches : 
inspired by cognitive 
science, neuroscience, 
neuronal computation 
models. Decomposes into a 
task into cognitive skills/
functions 

 



1. WHAT DOES INTERACTIVE LEARNING MEAN? 
1.4. Example of motor learning 
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PROGRAMMING BY 
DEMONSTRATION 

 
IMITATION LEARNING 



2. PROGRAMMING BY DEMONSTRATION 
2.1. Learning by imitation 
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2. PROGRAMMING BY DEMONSTRATION 
2.1. Learning by imitation 

•  An implicit, natural means of training a machine that would be 
accessible to lay people  

•  A powerful mechanism for reducing the complexity of search 
spaces for learning 

•  Studying and modeling the coupling of perception and action  
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2. PROGRAMMING BY DEMONSTRATION 
2.2. Why imitation learning? What is imitation learning? 
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59.1 History
At the beginning of the 1980s, PbD started attracting
attention in the field of manufacturing robotics. PbD
appeared as a promising route to automate the tedious
manual programming of robots and as way to reduce the
costs involved in the development and maintenance of
robots in a factory.

As a first approach to PbD, symbolic reasoning was
commonly adopted in robotics [59.2–6], with processes
referred to as teach-in, guiding or play-back methods.
In these works, PbD was performed through manual
(teleoperated) control. The position of the end-effector
and the forces applied on the object manipulated were
stored throughout the demonstrations together with the

Observation of  multiple
demonstrations

Reproduction of  a generalized
motion in a different situation

Fig. 59.1 Left: A robot learns how to make a chess move
(namely moving the queen forward) by generalizing across
different demonstrations of the task performed in slightly
different situations (different starting positions of the hand).
The robot records its joints’ trajectories and learns to extract
what-to-imitate, i. e. that the task constraints are reduced to
a subpart of the motion located in a plane defined by the
three chess pieces. Right: The robot reproduces the skill
in a new context (for different initial position of the chess
piece) by finding an appropriate controller that satisfies
both the task constraints and constraints relative to its body
limitation (how-to-imitate problem), adapted from [59.1]

positions and orientations of the obstacles and of the tar-
get. This sensorimotor information was then segmented
into discrete subgoals (keypoints along the trajectory)
and into appropriate primitive actions to attain these
subgoals (Fig. 59.2). Primitive actions were commonly
chosen to be simple point-to-point movements that in-
dustrial robots employed at this time. Examples of
subgoals would be, e.g., the robot’s gripper orientation
and position in relation to the goal [59.4]. Consequently,
the demonstrated task was segmented into a sequence of
state-action-state transitions.

To take into account the variability of human motion
and the noise inherent to the sensors capturing the move-
ments, it appeared necessary to develop a method that
would consolidate all demonstrated movements. For this
purpose, the state-action-state sequence was converted
into symbolic if-then rules, describing the states and
the actions according to symbolic relationships, such
as in contact, close-to, move-to, grasp-object, move-
above, etc. Appropriate numerical definitions of these
symbols (i. e., when would an object be considered as
close-to or far-from) were given as prior knowledge to
the system. A complete demonstration was thus encoded
in a graph-based representation, where each state con-
stituted a graph node and each action a directed link
between two nodes. Symbolic reasoning could then
unify different graphical representations for the same
task by merging and deleting nodes [59.3].

Extraction of a subset
of keypoints

Demonstration Reproduction

Fig. 59.2 Exact copy of a skill by interpolating between
a set of pre-defined keypoints, [59.2]

P
a
rt

G
5
9
.1

Generalize across sets of 
demonstrations.  

Copying the demonstrated 
movements  

•  How to generalize a task 
•  How to evaluate a reproduction attempt 
•  How to better define the role of the user 

during learning 
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Fig. 59.6 PbD in a virtual reality (VR) setup, providing the robot with virtual fixtures. VR acts as an intermediate layer
of interaction to complement real-world demonstration and reproduction. (After [59.44])

Demonstrated effect
model

Corresponding effect
imitator

Relative position

Absolute position

Relative Displacement

Fig. 59.7 Use of a metric of imitation
performance to evaluate a reproduc-
tion attempt and find an optimal
controller for the reproduction of
a task (here, to displace the square in
a 2D world). (After [59.45])

Extraction of the
task constraints

Application to
a new context

Demonstration Model of the skill Reproduction

Fig. 59.8 Generalization of a skill by
extracting the statistical regularities
across multiple observations, [59.46]

termine the weights one must attach to reproducing each
of the components of the skill. Once the metric is de-
termined, one can find an optimal controller to imitate
by trying to minimize this metric (e.g., by evaluating
several reproduction attempts or by deriving the metric

to find an optimum). The metric acts as a cost function
for the reproduction of the skill [59.33]. In other terms,
a metric of imitation provides a way of expressing quan-
titatively the user’s intentions during the demonstrations
and to evaluate the robot’s faithfulness at reproducing
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2.2. Why imitation learning? What is imitation learning? 
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At the beginning of the 1980s, PbD started attracting
attention in the field of manufacturing robotics. PbD
appeared as a promising route to automate the tedious
manual programming of robots and as way to reduce the
costs involved in the development and maintenance of
robots in a factory.

As a first approach to PbD, symbolic reasoning was
commonly adopted in robotics [59.2–6], with processes
referred to as teach-in, guiding or play-back methods.
In these works, PbD was performed through manual
(teleoperated) control. The position of the end-effector
and the forces applied on the object manipulated were
stored throughout the demonstrations together with the
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Fig. 59.1 Left: A robot learns how to make a chess move
(namely moving the queen forward) by generalizing across
different demonstrations of the task performed in slightly
different situations (different starting positions of the hand).
The robot records its joints’ trajectories and learns to extract
what-to-imitate, i. e. that the task constraints are reduced to
a subpart of the motion located in a plane defined by the
three chess pieces. Right: The robot reproduces the skill
in a new context (for different initial position of the chess
piece) by finding an appropriate controller that satisfies
both the task constraints and constraints relative to its body
limitation (how-to-imitate problem), adapted from [59.1]

positions and orientations of the obstacles and of the tar-
get. This sensorimotor information was then segmented
into discrete subgoals (keypoints along the trajectory)
and into appropriate primitive actions to attain these
subgoals (Fig. 59.2). Primitive actions were commonly
chosen to be simple point-to-point movements that in-
dustrial robots employed at this time. Examples of
subgoals would be, e.g., the robot’s gripper orientation
and position in relation to the goal [59.4]. Consequently,
the demonstrated task was segmented into a sequence of
state-action-state transitions.

To take into account the variability of human motion
and the noise inherent to the sensors capturing the move-
ments, it appeared necessary to develop a method that
would consolidate all demonstrated movements. For this
purpose, the state-action-state sequence was converted
into symbolic if-then rules, describing the states and
the actions according to symbolic relationships, such
as in contact, close-to, move-to, grasp-object, move-
above, etc. Appropriate numerical definitions of these
symbols (i. e., when would an object be considered as
close-to or far-from) were given as prior knowledge to
the system. A complete demonstration was thus encoded
in a graph-based representation, where each state con-
stituted a graph node and each action a directed link
between two nodes. Symbolic reasoning could then
unify different graphical representations for the same
task by merging and deleting nodes [59.3].
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2. PROGRAMMING BY DEMONSTRATION 
2.3. Engineering approaches to PbD 
 

The different types of representation to encode a skill 
v  a low-level representation of the skill, taking the form of a non-

linear mapping between sensory and motor information, which we 
will later refer to as trajectories encoding  

v  high-level representation of the skill that decomposes the skill in a 
sequence of action-perception units, which we will refer to as 
symbolic encoding  
 

what to imitate, how to imitate, when to imitate and who to imitate : 
making no assumptions on the type of skills that may be transmitted  
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2. PROGRAMMING BY DEMONSTRATION 
2.4. How to evaluate a reproduction attempt 

v  Metric of imitation performance: extract the important features 
characterizing the skill 

v  An optimal controller to imitate by trying to minimize this metric  
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Fig. 59.6 PbD in a virtual reality (VR) setup, providing the robot with virtual fixtures. VR acts as an intermediate layer
of interaction to complement real-world demonstration and reproduction. (After [59.44])
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Fig. 59.7 Use of a metric of imitation
performance to evaluate a reproduc-
tion attempt and find an optimal
controller for the reproduction of
a task (here, to displace the square in
a 2D world). (After [59.45])

Extraction of the
task constraints

Application to
a new context

Demonstration Model of the skill Reproduction

Fig. 59.8 Generalization of a skill by
extracting the statistical regularities
across multiple observations, [59.46]

termine the weights one must attach to reproducing each
of the components of the skill. Once the metric is de-
termined, one can find an optimal controller to imitate
by trying to minimize this metric (e.g., by evaluating
several reproduction attempts or by deriving the metric

to find an optimum). The metric acts as a cost function
for the reproduction of the skill [59.33]. In other terms,
a metric of imitation provides a way of expressing quan-
titatively the user’s intentions during the demonstrations
and to evaluate the robot’s faithfulness at reproducing
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termine the weights one must attach to reproducing each
of the components of the skill. Once the metric is de-
termined, one can find an optimal controller to imitate
by trying to minimize this metric (e.g., by evaluating
several reproduction attempts or by deriving the metric

to find an optimum). The metric acts as a cost function
for the reproduction of the skill [59.33]. In other terms,
a metric of imitation provides a way of expressing quan-
titatively the user’s intentions during the demonstrations
and to evaluate the robot’s faithfulness at reproducing
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2. PROGRAMMING BY DEMONSTRATION 
2.4. How to evaluate a reproduction attempt 
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Fig. 59.9 Illustration of the different levels of representation for describing the skill

those. Figure 59.7 shows an illustration of the concept
of a metric of imitation performance and its use to drive
the robot’s reproduction.

To learn the metric (i. e., to infer the task con-
straints), one common approach consists in creating
a model of the skill based on several demonstrations
of the same skill performed in slightly different condi-
tions (Fig. 59.8). This generalization process consists of
exploiting the variability inherent to the various demon-
strations and to extract the essential components of
the task. These essential components should be those
that remain unchanged across the various demonstra-
tions [59.1, 46–52].

Table 59.1 Advantages and drawbacks of representing a skill at a symbolic/trajectory level

Span of the generalization
process

Advantages Drawbacks

Symbolic level Sequential organization of
pre-defined motion elements

Allows to learn hierarchy,
rules and loops

Requires to pre-define a set
of basic controllers for repro-
duction

Trajectory
level

Generalization of movements Generic representation of
motion which allows encod-
ing of very different types of
signals/gestures

Does not allow to reproduce
complicated high-level skills

Figure 59.9 presents a schematic of the learning
process by considering either a representation of the
skill at a symbolic level or at a trajectory level (these
two schemas are detailed versions of the tinted boxes
depicted in Fig. 59.8). Table 59.1 summarizes the ad-
vantages and drawbacks of the different approaches.

Next, we review a number of specific approaches to
learning a skill at the symbolic and trajectory levels.

Symbolic Learning and Encoding of Skills
A large body of work uses a symbolic representation
of both the learning and the encoding of skills and
tasks [59.7, 22, 49, 50, 52–55]. This symbolic way of
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2. PROGRAMMING BY DEMONSTRATION 
2.5. Symbolic Learning and Encoding of Skills  
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Ø  Segment and encode the task according to sequences of 
predefined actions 

Ø  Encoding and regenerating (HMM) 
Robot Programming by Demonstration 59.2 Engineering-Oriented Approaches 1377
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Goal
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overview
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Fig. 59.10 (a) Training center with dedicated sensors.
(b) Precedence graphs learned by the system for the ‘set-
ting the table’ task. (a) Initial task precedence graph for the
first three demonstrations. (b) Final task precedence graph
after observing additional examples. (After [59.50])

encoding skills may take several forms. One common
way is to segment and encode the task according to se-
quences of predefined actions, described symbolically.
Encoding and regenerating the sequences of these ac-
tions can, however, be done using classical machine
learning techniques, such as HMM [59.22].

Often, these actions are encoded in a hierarchical
manner. In [59.49], a graph-based approach is used
to generalize an object’s transporting skill by using
a wheeled mobile robot. In the model, each node in
the graph represents a complete behaviour and gen-
eralization takes place at the level of the topological
representation of the graph. The latter is updated incre-
mentally.

References [59.50] and [59.52] follow a similar hi-
erarchical and incremental approach to encode various
household tasks (such as setting the table and putting

Demonstration 1

Demonstration 2

A

Possible
execution
sequence

Constraints

A

A<B
A<F

A<B
B<F

A<G
B<G

F<G
E <G

E<F

E B G

A E B F

B E G

G

Fig. 59.11 Extraction of the task constraints by considering
a symbolic representation of the skill. (After [59.52])

dishes in a dishwasher), Fig. 59.10. There, learning con-
sists in extracting symbolic rules that manages the way
each object must be handled (Fig. 59.11).

Reference [59.54] also exploits a hierarchical ap-
proach to encoding a skill in terms of pre-defined
behaviours. The skill consists in moving through a maze
where a wheeled robot must avoid several kinds of ob-
stacles and reach a set of specific subgoals. The novelty
of the approach is that it uses a symbolic representation
of the skill to explore the teacher’s role in guiding the
incremental learning of the robot.

Finally, [59.55] takes a symbolic approach to en-
coding human motions as sets of pre-defined postures,
positions or configuration and considers different lev-
els of granularity for the symbolic representation of the
motion. This a priori knowledge is then used to explore
the correspondence problem through several simulated
setups including motion in joint space of arm links and
displacements of objects on a 2D plane (Fig. 59.7).

The main advantage of these symbolic approaches
is that high-level skills (consisting of sequences of
symbolic cues) can be learned efficiently through an
interactive process. However, because of the symbolic
nature of their encoding, the methods rely on a large
amount of prior knowledge to predefine the important
cues and to segment those efficiently (Table 59.1).

Learning and Encoding a Skill
at Trajectory-Level

Choosing the variables well to encode a particular move-
ment is crucial, as it already gives part of the solution
to the problem of defining what is important to imitate.
Work in PbD encodes human movements in either joint
space, task space or torque space [59.56–58]. The encod-
ing may be specific to a cyclic motion [59.14], a discrete
motion [59.1], or to a combination of both [59.59].

Encoding often encompasses the use of dimensional-
ity reduction techniques that project the recorded signals
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2.5. Learning and Encoding a Skill at Trajectory-Level  
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Ø  Choosing the variables well 
to encode a particular 
movement  

Ø  Encode human movements in 
joint, task or torque space 

Ø  Cyclic/discrete motion 
Ø  Skill Encoding Based on 

Statistical Modeling : how 
statistical learning techniques 
deal with the high variability 
inherent to the 
demonstrations.  



2. PROGRAMMING BY DEMONSTRATION 
2.6. Gaussian Mixture Model and Regression 
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Fig. 59.14 Schematic illustration showing continuous constraints extracted from a set of demonstrations performed in
different contexts (namely, different initial positions of objects). Each set of signals recorded during the demonstration
is first projected into different latent spaces (through an automatic process of reduction of the dimensionality, such as
principal component analysis (PCA) or independent component analysis (ICA)). Each constraint in this constricted space
is then represented probabilistically through gaussian mixture regression (GMR) (see Table 59.2). In order to reproduce
the task, each constraint is first re-projected in the original data space and a trajectory satisfying optimally all constraints
is then computed, after [59.66]

with the highest likelihood, i. e., the one that generalizes
the most compared to the others). Yang et al. [59.57] use
HMMs to encode the motion of a robot’s gripper either
in the joint space or in the task space by considering
either the positions or the velocities of the gripper.

The mimesis model [59.72–75] follows an approach
in which the HMM encodes a set of trajectories, and
where multiple HMMs can be used to retrieve new gener-
alized motions through a stochastic process (Fig. 59.13).
A drawback of such an approach is that it generates
discontinuities in the trajectories regenerated by the
system. Interpolation techniques have been proposed
to deal with this issue [59.76–78]. Another approach
consists of pre-decomposing the trajectories into a set
of relevant keypoints and to retrieve a generalized
version of the trajectories through spline fitting tech-
niques [59.79–81].

As an alternative to HMM and interpolation tech-
niques, Calinon et al. [59.1] used gaussian mixture
model (GMM) to encode a set of trajectories, and gaus-
sian mixture regression (GMR) to retrieve a smooth
generalized version of these trajectories and associated
variabilities (Fig. 59.14 and Table 59.2).

Skill Encoding Based on Dynamical Systems. Dynam-
ical systems offer a particularly interesting solution to
an imitation process aimed at being robust to pertur-
bations which is robust to dynamical changes in the
environment.

The first work to emphasize this approach was that
of Ijspeert et al. [59.59], who designed a motor rep-
resentation based on dynamical systems for encoding
movements and for replaying them in various conditions
(Fig. 59.15). The approach combines two ingredients:
nonlinear dynamical systems for robustly encoding the
trajectories, and techniques from non-parametric regres-
sion for shaping the attractor landscapes according to the
demonstrated trajectories. The essence of the approach
is to start with a simple dynamical system, e.g., a set
of linear differential equations, and to transform it into
a nonlinear system with prescribed attractor dynamics
by means of a learnable autonomous forcing term. One
can generate both point attractors and limit cycle attrac-
tors of almost arbitrary complexity. The point attractors
and limit cycle attractors are used to respectively encode
discrete (e.g. reaching) and rhythmic movements (e.g.
drumming).

Locally weighted regression (LWR) was initially
proposed to learn the above system’s parameters
[59.82–84]. It can be viewed as a memory-based method
combining the simplicity of linear least squares re-
gression and the flexibility of nonlinear regression.
Further work mainly concentrated on moving on from
a memory-based approach to a model-based approach,
and moving on from a batch learning process to an
incremental learning strategy [59.61, 85, 86]. Schaal
et al. [59.86] used receptive field weighted regression
(RFWR) as a non-parametric approach to incrementally
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Ø  Gaussian Mixture Model (GMM) to encode a set of trajectories 
Ø  Gaussian Mixture Regression (GMR) to retrieve a smooth 

generalized version of these trajectories and associated 
variabilities  
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Fig. 59.12a,b Motion learning in a subspace of lower dimensional-
ity by using a non-linear process based on gaussian processes (GP)
[59.63]. (a) Graphical model of imitation consisting of two pairs of
Gaussian Process regression models. In the forward direction, latent
variable models map from a low-dimensional latent space X to the
human joint space Y and robot joint space Z. In the inverse direction,
a regression model maps human motion data to points in the latent
space, where two similar human postures in the joint angle space
produce two points in the latent space that are close one to the other.
Thus, the use of generative regression models allows one to interpo-
late between known postures in the latent space to create reasonable
postures during the reproduction. (b) The model provides a smooth
certainty estimate in the posture’s latent space it infers (shaded map
from black to white), where training data are represented with circles
(here, a walking motion is depicted). Once a latent variable model
has been learned, a new motion can be quickly generated from the
learned kernels

into a latent space of motion of reduced dimensional-
ity. These techniques may either perform locally linear
transformations [59.60–62] or exploit global non-linear
methods [59.63–65] (Fig. 59.12).

The most promising approaches to encoding human
movements are those that encapsulate the dynamics of
the movement into the encoding itself [59.59, 67–70].
Several of these methods are highlighted below.

Skill Encoding Based on Statistical Modeling. One
trend of work investigates how statistical learning tech-
niques deal with the high variability inherent to the
demonstrations.

For instance, Ude et al. [59.56] use spline smoothing
techniques to deal with the uncertainty contained in sev-
eral motion demonstrations performed in a joint space
or in a task space.

Table 59.2 Probabilistic encoding and reproduction of
a skill through gaussian mixture regression (GMR) [59.66]

A dataset ξ = {ξ j }N
j=1 is defined by N observations ξ j ∈ RD of

sensory data changing through time (e.g., joint angle trajecto-
ries, hand paths), where each datapoint ξ j = {ξt, ξs} consists of
a temporal value ξt ∈ R and a spatial vector ξs ∈ R(D−1). The
dataset ξ is modelled by a gaussian mixture model (GMM) of
K components, defined by the probability density function

p(ξ j ) =
K∑

k=1

πkN (ξ j ;µk,Σk),

where πk are prior probabilities and N (ξ j ;µk, Σk) are Gaus-
sian distributions defined by mean vectors µk and covariance
matrices Σk , whose temporal and spatial components can be
represented separately as

µk = {µt,k, µs,k} , Σk =
(

Σtt,k Σts,k

Σst,k Σss,k

)

.

For each component k, the expected distribution of ξs given the
temporal value ξt is defined by

p(ξs|ξt, k) = N (ξs; ξ̂s,k, Σ̂ss,k),

ξ̂s,k = µs,k +Σst,k(Σtt,k)−1(ξt −µt,k),

Σ̂ss,k = Σss,k −Σst,k(Σtt,k)−1Σts,k .

By considering the complete GMM, the expected distribution
is defined by

p(ξs|ξt) =
K∑

k=1

βk N (ξs; ξ̂s,k, Σ̂ss,k),

where βk = p(k|ξt) is the probability of the component k to be
responsible for ξt, i. e.,

βk = p(k)p(ξt|k)
∑K

i=1 p(i)p(ξt|i)
= πkN (ξt;µt,k, Σtt,k)

∑K
i=1 πiN (ξt;µt,i ,Σtt,i )

.

By using the linear transformation properties of Gaussian dis-
tributions, an estimation of the conditional expectation of ξs

given ξt is thus defined by p(ξs|ξt) ∼ N (ξ̂s, Σ̂ss), where the
parameters of the Gaussian distribution are defined by

ξ̂s =
K∑

k=1

βk ξ̂s,k , Σ̂ss = ∑K
k=1 β2

k Σ̂ss,k .

By evaluating {ξ̂s, Σ̂ss} at different time steps ξt, a general-
ized form of the motions ξ̂ = {ξt, ξ̂s} and associated covariance
matrices Σ̂ss describing the constraints are computed. If multi-
ple constraints are considered (e.g., considering actions ξ (1)

and ξ (2) on two different objects), the resulting constraints
are computed by first estimating p(ξs|ξt) = p(ξ (1)

s |ξt) · p(ξ (2)
s |ξt)

and then computing E[p(ξs|ξt)] to reproduce the skill. See
Fig. 59.14 for an illustration of this method to learning con-
tinuous constraints in a set of trajectories. (After [59.66])

Part
G

59.2

1378 Part G Human-Centered and Life-Like Robotics

Inverse
GP kernels

· · ·

GPLVM

X

Y Z

GPLVM

a) b)

Fig. 59.12a,b Motion learning in a subspace of lower dimensional-
ity by using a non-linear process based on gaussian processes (GP)
[59.63]. (a) Graphical model of imitation consisting of two pairs of
Gaussian Process regression models. In the forward direction, latent
variable models map from a low-dimensional latent space X to the
human joint space Y and robot joint space Z. In the inverse direction,
a regression model maps human motion data to points in the latent
space, where two similar human postures in the joint angle space
produce two points in the latent space that are close one to the other.
Thus, the use of generative regression models allows one to interpo-
late between known postures in the latent space to create reasonable
postures during the reproduction. (b) The model provides a smooth
certainty estimate in the posture’s latent space it infers (shaded map
from black to white), where training data are represented with circles
(here, a walking motion is depicted). Once a latent variable model
has been learned, a new motion can be quickly generated from the
learned kernels

into a latent space of motion of reduced dimensional-
ity. These techniques may either perform locally linear
transformations [59.60–62] or exploit global non-linear
methods [59.63–65] (Fig. 59.12).

The most promising approaches to encoding human
movements are those that encapsulate the dynamics of
the movement into the encoding itself [59.59, 67–70].
Several of these methods are highlighted below.

Skill Encoding Based on Statistical Modeling. One
trend of work investigates how statistical learning tech-
niques deal with the high variability inherent to the
demonstrations.

For instance, Ude et al. [59.56] use spline smoothing
techniques to deal with the uncertainty contained in sev-
eral motion demonstrations performed in a joint space
or in a task space.

Table 59.2 Probabilistic encoding and reproduction of
a skill through gaussian mixture regression (GMR) [59.66]

A dataset ξ = {ξ j }N
j=1 is defined by N observations ξ j ∈ RD of

sensory data changing through time (e.g., joint angle trajecto-
ries, hand paths), where each datapoint ξ j = {ξt, ξs} consists of
a temporal value ξt ∈ R and a spatial vector ξs ∈ R(D−1). The
dataset ξ is modelled by a gaussian mixture model (GMM) of
K components, defined by the probability density function

p(ξ j ) =
K∑

k=1

πkN (ξ j ;µk,Σk),

where πk are prior probabilities and N (ξ j ;µk, Σk) are Gaus-
sian distributions defined by mean vectors µk and covariance
matrices Σk , whose temporal and spatial components can be
represented separately as

µk = {µt,k, µs,k} , Σk =
(

Σtt,k Σts,k

Σst,k Σss,k

)

.

For each component k, the expected distribution of ξs given the
temporal value ξt is defined by

p(ξs|ξt, k) = N (ξs; ξ̂s,k, Σ̂ss,k),

ξ̂s,k = µs,k +Σst,k(Σtt,k)−1(ξt −µt,k),

Σ̂ss,k = Σss,k −Σst,k(Σtt,k)−1Σts,k .

By considering the complete GMM, the expected distribution
is defined by

p(ξs|ξt) =
K∑

k=1

βk N (ξs; ξ̂s,k, Σ̂ss,k),

where βk = p(k|ξt) is the probability of the component k to be
responsible for ξt, i. e.,

βk = p(k)p(ξt|k)
∑K

i=1 p(i)p(ξt|i)
= πkN (ξt;µt,k, Σtt,k)

∑K
i=1 πiN (ξt;µt,i ,Σtt,i )

.

By using the linear transformation properties of Gaussian dis-
tributions, an estimation of the conditional expectation of ξs

given ξt is thus defined by p(ξs|ξt) ∼ N (ξ̂s, Σ̂ss), where the
parameters of the Gaussian distribution are defined by

ξ̂s =
K∑

k=1

βk ξ̂s,k , Σ̂ss = ∑K
k=1 β2

k Σ̂ss,k .

By evaluating {ξ̂s, Σ̂ss} at different time steps ξt, a general-
ized form of the motions ξ̂ = {ξt, ξ̂s} and associated covariance
matrices Σ̂ss describing the constraints are computed. If multi-
ple constraints are considered (e.g., considering actions ξ (1)

and ξ (2) on two different objects), the resulting constraints
are computed by first estimating p(ξs|ξt) = p(ξ (1)

s |ξt) · p(ξ (2)
s |ξt)

and then computing E[p(ξs|ξt)] to reproduce the skill. See
Fig. 59.14 for an illustration of this method to learning con-
tinuous constraints in a set of trajectories. (After [59.66])
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Fig. 59.12a,b Motion learning in a subspace of lower dimensional-
ity by using a non-linear process based on gaussian processes (GP)
[59.63]. (a) Graphical model of imitation consisting of two pairs of
Gaussian Process regression models. In the forward direction, latent
variable models map from a low-dimensional latent space X to the
human joint space Y and robot joint space Z. In the inverse direction,
a regression model maps human motion data to points in the latent
space, where two similar human postures in the joint angle space
produce two points in the latent space that are close one to the other.
Thus, the use of generative regression models allows one to interpo-
late between known postures in the latent space to create reasonable
postures during the reproduction. (b) The model provides a smooth
certainty estimate in the posture’s latent space it infers (shaded map
from black to white), where training data are represented with circles
(here, a walking motion is depicted). Once a latent variable model
has been learned, a new motion can be quickly generated from the
learned kernels

into a latent space of motion of reduced dimensional-
ity. These techniques may either perform locally linear
transformations [59.60–62] or exploit global non-linear
methods [59.63–65] (Fig. 59.12).

The most promising approaches to encoding human
movements are those that encapsulate the dynamics of
the movement into the encoding itself [59.59, 67–70].
Several of these methods are highlighted below.

Skill Encoding Based on Statistical Modeling. One
trend of work investigates how statistical learning tech-
niques deal with the high variability inherent to the
demonstrations.

For instance, Ude et al. [59.56] use spline smoothing
techniques to deal with the uncertainty contained in sev-
eral motion demonstrations performed in a joint space
or in a task space.

Table 59.2 Probabilistic encoding and reproduction of
a skill through gaussian mixture regression (GMR) [59.66]

A dataset ξ = {ξ j }N
j=1 is defined by N observations ξ j ∈ RD of

sensory data changing through time (e.g., joint angle trajecto-
ries, hand paths), where each datapoint ξ j = {ξt, ξs} consists of
a temporal value ξt ∈ R and a spatial vector ξs ∈ R(D−1). The
dataset ξ is modelled by a gaussian mixture model (GMM) of
K components, defined by the probability density function

p(ξ j ) =
K∑

k=1

πkN (ξ j ;µk,Σk),

where πk are prior probabilities and N (ξ j ;µk, Σk) are Gaus-
sian distributions defined by mean vectors µk and covariance
matrices Σk , whose temporal and spatial components can be
represented separately as

µk = {µt,k, µs,k} , Σk =
(

Σtt,k Σts,k

Σst,k Σss,k

)

.

For each component k, the expected distribution of ξs given the
temporal value ξt is defined by

p(ξs|ξt, k) = N (ξs; ξ̂s,k, Σ̂ss,k),

ξ̂s,k = µs,k +Σst,k(Σtt,k)−1(ξt −µt,k),

Σ̂ss,k = Σss,k −Σst,k(Σtt,k)−1Σts,k .

By considering the complete GMM, the expected distribution
is defined by

p(ξs|ξt) =
K∑

k=1

βk N (ξs; ξ̂s,k, Σ̂ss,k),

where βk = p(k|ξt) is the probability of the component k to be
responsible for ξt, i. e.,

βk = p(k)p(ξt|k)
∑K

i=1 p(i)p(ξt|i)
= πkN (ξt;µt,k, Σtt,k)

∑K
i=1 πiN (ξt;µt,i ,Σtt,i )

.

By using the linear transformation properties of Gaussian dis-
tributions, an estimation of the conditional expectation of ξs

given ξt is thus defined by p(ξs|ξt) ∼ N (ξ̂s, Σ̂ss), where the
parameters of the Gaussian distribution are defined by

ξ̂s =
K∑

k=1

βk ξ̂s,k , Σ̂ss = ∑K
k=1 β2

k Σ̂ss,k .

By evaluating {ξ̂s, Σ̂ss} at different time steps ξt, a general-
ized form of the motions ξ̂ = {ξt, ξ̂s} and associated covariance
matrices Σ̂ss describing the constraints are computed. If multi-
ple constraints are considered (e.g., considering actions ξ (1)

and ξ (2) on two different objects), the resulting constraints
are computed by first estimating p(ξs|ξt) = p(ξ (1)

s |ξt) · p(ξ (2)
s |ξt)

and then computing E[p(ξs|ξt)] to reproduce the skill. See
Fig. 59.14 for an illustration of this method to learning con-
tinuous constraints in a set of trajectories. (After [59.66])
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Fig. 59.12a,b Motion learning in a subspace of lower dimensional-
ity by using a non-linear process based on gaussian processes (GP)
[59.63]. (a) Graphical model of imitation consisting of two pairs of
Gaussian Process regression models. In the forward direction, latent
variable models map from a low-dimensional latent space X to the
human joint space Y and robot joint space Z. In the inverse direction,
a regression model maps human motion data to points in the latent
space, where two similar human postures in the joint angle space
produce two points in the latent space that are close one to the other.
Thus, the use of generative regression models allows one to interpo-
late between known postures in the latent space to create reasonable
postures during the reproduction. (b) The model provides a smooth
certainty estimate in the posture’s latent space it infers (shaded map
from black to white), where training data are represented with circles
(here, a walking motion is depicted). Once a latent variable model
has been learned, a new motion can be quickly generated from the
learned kernels

into a latent space of motion of reduced dimensional-
ity. These techniques may either perform locally linear
transformations [59.60–62] or exploit global non-linear
methods [59.63–65] (Fig. 59.12).

The most promising approaches to encoding human
movements are those that encapsulate the dynamics of
the movement into the encoding itself [59.59, 67–70].
Several of these methods are highlighted below.

Skill Encoding Based on Statistical Modeling. One
trend of work investigates how statistical learning tech-
niques deal with the high variability inherent to the
demonstrations.

For instance, Ude et al. [59.56] use spline smoothing
techniques to deal with the uncertainty contained in sev-
eral motion demonstrations performed in a joint space
or in a task space.

Table 59.2 Probabilistic encoding and reproduction of
a skill through gaussian mixture regression (GMR) [59.66]

A dataset ξ = {ξ j }N
j=1 is defined by N observations ξ j ∈ RD of

sensory data changing through time (e.g., joint angle trajecto-
ries, hand paths), where each datapoint ξ j = {ξt, ξs} consists of
a temporal value ξt ∈ R and a spatial vector ξs ∈ R(D−1). The
dataset ξ is modelled by a gaussian mixture model (GMM) of
K components, defined by the probability density function

p(ξ j ) =
K∑

k=1

πkN (ξ j ;µk,Σk),

where πk are prior probabilities and N (ξ j ;µk, Σk) are Gaus-
sian distributions defined by mean vectors µk and covariance
matrices Σk , whose temporal and spatial components can be
represented separately as

µk = {µt,k, µs,k} , Σk =
(

Σtt,k Σts,k

Σst,k Σss,k

)

.

For each component k, the expected distribution of ξs given the
temporal value ξt is defined by

p(ξs|ξt, k) = N (ξs; ξ̂s,k, Σ̂ss,k),

ξ̂s,k = µs,k +Σst,k(Σtt,k)−1(ξt −µt,k),

Σ̂ss,k = Σss,k −Σst,k(Σtt,k)−1Σts,k .

By considering the complete GMM, the expected distribution
is defined by

p(ξs|ξt) =
K∑

k=1

βk N (ξs; ξ̂s,k, Σ̂ss,k),

where βk = p(k|ξt) is the probability of the component k to be
responsible for ξt, i. e.,

βk = p(k)p(ξt|k)
∑K

i=1 p(i)p(ξt|i)
= πkN (ξt;µt,k, Σtt,k)

∑K
i=1 πiN (ξt;µt,i ,Σtt,i )

.

By using the linear transformation properties of Gaussian dis-
tributions, an estimation of the conditional expectation of ξs

given ξt is thus defined by p(ξs|ξt) ∼ N (ξ̂s, Σ̂ss), where the
parameters of the Gaussian distribution are defined by

ξ̂s =
K∑

k=1

βk ξ̂s,k , Σ̂ss = ∑K
k=1 β2

k Σ̂ss,k .

By evaluating {ξ̂s, Σ̂ss} at different time steps ξt, a general-
ized form of the motions ξ̂ = {ξt, ξ̂s} and associated covariance
matrices Σ̂ss describing the constraints are computed. If multi-
ple constraints are considered (e.g., considering actions ξ (1)

and ξ (2) on two different objects), the resulting constraints
are computed by first estimating p(ξs|ξt) = p(ξ (1)

s |ξt) · p(ξ (2)
s |ξt)

and then computing E[p(ξs|ξt)] to reproduce the skill. See
Fig. 59.14 for an illustration of this method to learning con-
tinuous constraints in a set of trajectories. (After [59.66])
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These early works highlighted the importance of providing a set 
of examples that the robot can use:  
 
•  by constraining the demonstrations to modalities that the 

robot can understand 
•  by providing a sufficient number of examples to achieve a 

desired generality.  
•  by providing examples representative enough of the all the 

situations 
•  By limiting the correspondence problems 



3.1. Limitations of Programming by Demonstration 
 
 
 v  give the teacher an active role during learning  
v  the interaction aspect of the transfer process  
§  Social cues  
§  Pointing and gazing  
§  Vocal speech recognition 
§  Prosody of the speech 
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3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.2. Combination of several learning strategies 
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PbD can be jointly used with other learning strategies to 
overcome some limitations of PbD  
 

Robot Programming by Demonstration 59.2 Engineering-Oriented Approaches 1385

tion that imitation is not just about observing and
replicating the motion, but rather about understand-
ing the goals of a given action. Learning to imitate
relies importantly on the imitator’s capacity to infer
the demonstrator’s intentions [59.89, 111]. However,
demonstrations may be ambiguous and extracting the
intention of the demonstrator requires building a cogni-
tive model of the demonstrator [59.51, 112], as well as
exploiting other social cues to provide complementary
knowledge [59.54, 89, 113].

Understanding the way humans learn to both ex-
tract the goals of a set of observed actions and to
give these goals a hierarchy of preference is fundamen-
tal to our understanding of the underlying decisional
process of imitation. Recent work tackling these is-
sues has followed a probabilistic approach to explain
both a goal’s derivation and sequential application. The
explanation in turn makes it possible to learn manip-
ulatory tasks that require the sequencing of a goal’s
subsets [59.92, 106, 115, 116].

Understanding the goal of the task is still only half
of the picture, as there may be several ways of achieving
the goal. Moreover, what is good for the demonstrator
may not necessarily be good for the imitator [59.33].
Thus, different models may be allowed to compete to
find a solution that is optimal both from the point of view
of the imitator and that of the demonstrator [59.77,117].

59.2.4 Joint Use of Robot PbD
with Other Learning Techniques

To recall, a main argument for the development of PbD
methods was that it would speed up learning by pro-
viding an example of good solution. This, however, is

Reproduction

Evaluation by the
robot of the

reproduction attempt

Direct feedback

Reinforcement
learning

Incremental refinement

Model of the skillDemonstration

Refinement of the
learned skill through

the user's support

Self  exploration of
the learned skill

Evaluation by the user
of the reproduction

attempt

Fig. 59.21 Iterative refinement of the learned skill through teacher’s support or through self-exploration by the robot

a) b)

c) d)

Fig. 59.20a–d Illustration of the use of reinforcement
learning to complement PbD. (a) The robot is trained
through kinesthetic demonstration on a task that consists of
placing a cylinder in a box. (b) The robot reproduces suc-
cessfully the skill when the new situation is only slightly
different from that of the demonstration, using the dynam-
ical system described in Fig. 59.16. (c) The robot fails at
reproducing the skill when the context has changed impor-
tantly (a large obstacle has been placed in the way). (d) The
robot relearns a new trajectory that reproduces the essential
aspect of the demonstrated skill, i. e. putting the cylinder in
the box, but avoiding the obstacle. (After [59.114])

true in sofar that the context for the reproduction is
sufficiently similar to that of the demonstration. We
have seen in Sect. 59.2 that the use of dynamical sys-
tems allows the robot to depart to some extent from
a learned trajectory to reach for the target, even when
both the object and the hand of the robot have moved
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Socially Guided Exploration! Autonomous Exploration!
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Experimental Setup

3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.3. Combination of several learning strategies - Example 
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1) SGIM-D learns with better precision:  
 error in SGIM-D is lower (t-test p < 0.05)  
2) SGIM-D learns more reliably 
3) SGIM-D learns faster  

3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.3. Combination of several learning strategies - Example 

Nguyen and Oudeyer, Autonomous Robots, 2014. 
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3:13 

3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.3. Combination of several learning strategies - Example 



3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.4. Active learning 

what to imitate, how to imitate, when to imitate and who to imitate 

04/10/17 NGUYEN SAO MAI - PRINCIPLES OF  INTERACTIVE LEARNING:  IMITATION LEARNING AND ACTIVE REQUESTS 

27 



3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.5. Example of a strategic learner 
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How can we learn to 
recognise 3d objects  
with all its different views? 

ANR MACSi Project in collaboration with ISIR/ENSTA/INRIA
Nguyen et al,  TAMD 2013
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How can we learn to 
recognise 3d objects  
with all its different views? 

✤  Manipulation: which 
manipulation will bring you 
more useful information about 
the object? 

✤  push, lift&drop, ask human 

3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.4. Example 1 

ANR MACSi Project in collaboration with ISIR/ENSTA/INRIA
Nguyen et al.,  TAMD 2013
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✤  Several objects: which object 
should you choose to 
manipulate? 

How can we learn to 
recognise 3d objects  
with all its different views? 

✤  Manipulation: which 
manipulation will bring you 
more useful information about 
the object? 

✤  push, lift&drop, ask human 

ANR MACSi Project in collaboration with ISIR/ENSTA/INRIA
Nguyen et al,  TAMD 2013

3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.4. Example 1 



SGIM-ACTS Random sampling 

SGIM-ACTS learns better than a Random sampling.  
Active data collection improves performance 

Results 1: with a normal teacher 
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3. BEYOND PROGRAMMING BY DEMONSTRATION 
3.4. Example 1 

ANR MACSi Project in collaboration with ISIR/ENSTA/INRIA
Nguyen et al,  TAMD 2013



A bad teacher can affect the performance of a passive learner 

Results 2: with a bad teacher
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