
Tests
Feature extraction

Tests & Features
IML

Cédric Buche

ENIB

29 août 2019

C. BUCHE - buche@enib.fr IML 1 / 114

Tests & Features
IML

Cédric Buche

ENIB

29 août 2019

2
0
1
9
-0
8
-2
9

IML

Page 1 :

Tests
Feature extraction

1 Tests
Training vs Testing
K-Fold Cross Validation
Model performance

2 Feature extraction
Feature
Feature extraction
Image processing : Object detection and tracking

C. BUCHE - buche@enib.fr IML 2 / 114

1 Tests
Training vs Testing
K-Fold Cross Validation
Model performance

2 Feature extraction
Feature
Feature extraction
Image processing : Object detection and tracking

2
0
1
9
-0
8
-2
9

IML

Page 2 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

1 Tests
Training vs Testing
K-Fold Cross Validation
Model performance

2 Feature extraction
Feature
Feature extraction
Image processing : Object detection and tracking

C. BUCHE - buche@enib.fr IML 3 / 114

1 Tests
Training vs Testing
K-Fold Cross Validation
Model performance

2 Feature extraction
Feature
Feature extraction
Image processing : Object detection and tracking

2
0
1
9
-0
8
-2
9

IML
Tests

Page 3 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Testing

. How well is my model doing ?

. How do I improve it ?

C. BUCHE - buche@enib.fr IML 4 / 114

Testing

. How well is my model doing ?

. How do I improve it ?

2
0
1
9
-0
8
-2
9

IML
Tests

Testing

Page 4 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Which model is better ?

C. BUCHE - buche@enib.fr IML 5 / 114

Which model is better ?

2
0
1
9
-0
8
-2
9

IML
Tests

Which model is better ?

Page 5 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Which model is better ?

C. BUCHE - buche@enib.fr IML 6 / 114

Which model is better ?

2
0
1
9
-0
8
-2
9

IML
Tests

Which model is better ?

Page 6 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Which model is better ?

C. BUCHE - buche@enib.fr IML 7 / 114

Which model is better ?

2
0
1
9
-0
8
-2
9

IML
Tests

Which model is better ?

Page 7 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Which model is better ?

C. BUCHE - buche@enib.fr IML 8 / 114

Which model is better ?

2
0
1
9
-0
8
-2
9

IML
Tests

Which model is better ?

Page 8 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

C. BUCHE - buche@enib.fr IML 9 / 114

Training vs Testing

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 9 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

C. BUCHE - buche@enib.fr IML 10 / 114

Training vs Testing

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 10 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

C. BUCHE - buche@enib.fr IML 11 / 114

Training vs Testing

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 11 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

C. BUCHE - buche@enib.fr IML 12 / 114

Training vs Testing

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 12 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

C. BUCHE - buche@enib.fr IML 13 / 114

Training vs Testing

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 13 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

C. BUCHE - buche@enib.fr IML 14 / 114

Training vs Testing

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 14 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Learning Rule

. NEVER use your testing data for training

C. BUCHE - buche@enib.fr IML 15 / 114

Learning Rule

. NEVER use your testing data for training

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Learning Rule

Page 15 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Training vs Testing

def split_data(data , prob):

results = [], []

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x, y, test_pct):

data = zip(x, y) # pair corresponding values

train , test = split_data(data , 1 - test_pct) # split the data set of pairs

x_train , y_train = zip(*train) # magical un-zip trick

x_test , y_test = zip(*test)

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split(xs , ys , 0.33)

model.train(x_train , y_train)

performance = model.test(x_test , y_test)

C. BUCHE - buche@enib.fr IML 16 / 114

Training vs Testing

def split_data(data , prob):

results = [], []

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x, y, test_pct):

data = zip(x, y) # pair corresponding values

train , test = split_data(data , 1 - test_pct) # split the data set of pairs

x_train , y_train = zip(*train) # magical un-zip trick

x_test , y_test = zip(*test)

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split(xs , ys , 0.33)

model.train(x_train , y_train)

performance = model.test(x_test , y_test)2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Training vs Testing

Page 16 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Learning Rule

. NEVER use your testing data for training

How not losing data ?

C. BUCHE - buche@enib.fr IML 17 / 114

Learning Rule

. NEVER use your testing data for training

How not losing data ?

2
0
1
9
-0
8
-2
9

IML
Tests

Training vs Testing
Learning Rule

Page 17 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 18 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 18 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 19 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 19 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 20 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 20 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 21 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 21 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 22 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 22 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 23 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 23 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

K-Fold Cross Validation

C. BUCHE - buche@enib.fr IML 24 / 114

K-Fold Cross Validation

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation
K-Fold Cross Validation

Page 24 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

. How well is my model doing ?

� Tricky question

C. BUCHE - buche@enib.fr IML 25 / 114

. How well is my model doing ?

� Tricky question

2
0
1
9
-0
8
-2
9

IML
Tests

K-Fold Cross Validation

Page 25 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : Credit Card Fraud

C. BUCHE - buche@enib.fr IML 26 / 114

Example : Credit Card Fraud

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : Credit Card Fraud

Page 26 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : Credit Card Fraud

C. BUCHE - buche@enib.fr IML 27 / 114

Example : Credit Card Fraud

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : Credit Card Fraud

Page 27 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : Credit Card Fraud

C. BUCHE - buche@enib.fr IML 28 / 114

Example : Credit Card Fraud

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : Credit Card Fraud

Page 28 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : Credit Card Fraud

C. BUCHE - buche@enib.fr IML 29 / 114

Example : Credit Card Fraud

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : Credit Card Fraud

Page 29 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : Credit Card Fraud

C. BUCHE - buche@enib.fr IML 30 / 114

Example : Credit Card Fraud

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : Credit Card Fraud

Page 30 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : Credit Card Fraud

C. BUCHE - buche@enib.fr IML 31 / 114

Example : Credit Card Fraud

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : Credit Card Fraud

Page 31 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : medical model

C. BUCHE - buche@enib.fr IML 32 / 114

Example : medical model

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : medical model

Page 32 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK True Positive False Negative

HEALTHY False Positive True Negative

C. BUCHE - buche@enib.fr IML 33 / 114

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK True Positive False Negative

HEALTHY False Positive True Negative

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 33 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK True Positive False Negative

HEALTHY False Positive True Negative

C. BUCHE - buche@enib.fr IML 34 / 114

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK True Positive False Negative

HEALTHY False Positive True Negative

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 34 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

C. BUCHE - buche@enib.fr IML 35 / 114

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 35 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Example : spam model

C. BUCHE - buche@enib.fr IML 36 / 114

Example : spam model

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Example : spam model

Page 36 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SPAM Diagnosed NON SPAM

SPAM True Positive False Negative

NON SPAM False Positive True Negative

C. BUCHE - buche@enib.fr IML 37 / 114

Confusion Matrix

Diagnosed SPAM Diagnosed NON SPAM

SPAM True Positive False Negative

NON SPAM False Positive True Negative

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 37 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

C. BUCHE - buche@enib.fr IML 38 / 114

Confusion Matrix

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 38 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

C. BUCHE - buche@enib.fr IML 39 / 114

Confusion Matrix

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 39 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

C. BUCHE - buche@enib.fr IML 40 / 114

Confusion Matrix

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 40 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Accuracy

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

C. BUCHE - buche@enib.fr IML 41 / 114

Accuracy

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Accuracy

Page 41 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Accuracy

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

Accuracy = (1000+8000)/10000 = 90%

C. BUCHE - buche@enib.fr IML 42 / 114

Accuracy

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

Accuracy = (1000+8000)/10000 = 90%

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Accuracy

Page 42 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Accuracy

How many did we classify correctly ?

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

Accuracy = 80%
Accuracy = Correctly classified / all

C. BUCHE - buche@enib.fr IML 43 / 114

Accuracy

How many did we classify correctly ?

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

Accuracy = 80%
Accuracy = Correctly classified / all

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Accuracy

Page 43 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Accuracy

def accuracy(tp, fp, fn, tn):

correct = tp + tn

total = tp + fp + fn + tn

return correct / total

C. BUCHE - buche@enib.fr IML 44 / 114

Accuracy

def accuracy(tp, fp, fn, tn):

correct = tp + tn

total = tp + fp + fn + tn

return correct / total

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Accuracy

Page 44 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK False Negative

HEALTHY False Positive

C. BUCHE - buche@enib.fr IML 45 / 114

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK False Negative

HEALTHY False Positive

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 45 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK False Negative

HEALTHY False Positive

C. BUCHE - buche@enib.fr IML 46 / 114

Confusion Matrix

Diagnosed SICK Diagnosed HEALTHY

SICK False Negative

HEALTHY False Positive2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Confusion Matrix

Page 46 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Precision

Diagnosed SPAM Diagnosed NON SPAM

SPAM False Negative

NON SPAM False Positive

C. BUCHE - buche@enib.fr IML 47 / 114

Precision

Diagnosed SPAM Diagnosed NON SPAM

SPAM False Negative

NON SPAM False Positive2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Precision

Page 47 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Precision

. high PRECISION

. high RECALL

C. BUCHE - buche@enib.fr IML 48 / 114

Precision

. high PRECISION

. high RECALL2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Precision

Page 48 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Precision

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

Precision = 1000/ (1000+800) =55,7%

C. BUCHE - buche@enib.fr IML 49 / 114

Precision

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

Precision = 1000/ (1000+800) =55,7%

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Precision

Page 49 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Precision

How many did we classify correctly ?

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

Precision= 76.8%
Precision = True Positives/ (True Positives + False Positives)

C. BUCHE - buche@enib.fr IML 50 / 114

Precision

How many did we classify correctly ?

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

Precision= 76.8%
Precision = True Positives/ (True Positives + False Positives)

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Precision

Page 50 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Precision

def precision(tp, fp, fn, tn):

return tp / (tp + fp)

C. BUCHE - buche@enib.fr IML 51 / 114

Precision

def precision(tp, fp, fn, tn):

return tp / (tp + fp)

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Precision

Page 51 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Recall

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

Recall = 1000/ (1000+200) =83.3%

C. BUCHE - buche@enib.fr IML 52 / 114

Recall

How many did we classify correctly ?

Diagnosed SICK Diagnosed HEALTHY

SICK 1000 200

HEALTHY 800 8000

Recall = 1000/ (1000+200) =83.3%

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Recall

Page 52 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Recall

How many did we classify correctly ?

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

Recall= 37%
Recall = True Positives/ (True Positives + False Negatives)

C. BUCHE - buche@enib.fr IML 53 / 114

Recall

How many did we classify correctly ?

Diagnosed SPAM Diagnosed NON SPAM

SPAM 100 170

NON SPAM 30 700

Recall= 37%
Recall = True Positives/ (True Positives + False Negatives)

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Recall

Page 53 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Recall

def recall(tp, fp , fn , tn):

return tp / (tp + fn)

C. BUCHE - buche@enib.fr IML 54 / 114

Recall

def recall(tp, fp , fn , tn):

return tp / (tp + fn)

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Recall

Page 54 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Precision and Recall

� Precision : 76,9%
� Recall : 37%

� Precision : 55,7%
� Recall : 83.3%

C. BUCHE - buche@enib.fr IML 55 / 114

Precision and Recall

� Precision : 76,9%
� Recall : 37%

� Precision : 55,7%
� Recall : 83.3%

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Precision and Recall

Page 55 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Average

� Precision : 76,9%
� Recall : 37%
� Average : 56,9%

� Precision : 55,7%
� Recall : 83.3%
� Average : 69,5%

Average not OK
C. BUCHE - buche@enib.fr IML 56 / 114

Average

� Precision : 76,9%
� Recall : 37%
� Average : 56,9%

� Precision : 55,7%
� Recall : 83.3%
� Average : 69,5%

Average not OK

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Average

Page 56 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Average

C. BUCHE - buche@enib.fr IML 57 / 114

Average

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Average

Page 57 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Average

C. BUCHE - buche@enib.fr IML 58 / 114

Average

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Average

Page 58 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Average

C. BUCHE - buche@enib.fr IML 59 / 114

Average

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Average

Page 59 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

F1 Score

F1 Score = (2 x Precision x Recall) / (Precision + Recall)

. Precision : 76,9%

. Recall : 37%

. Average : 56,9%

. F1 Score = 50%

. Precision : 55,7%

. Recall : 83.3%

. Average : 69,5%

. F1 Score = (2x55,7x83.3) /
(55,7+83,3) = 66%

C. BUCHE - buche@enib.fr IML 60 / 114

F1 Score

F1 Score = (2 x Precision x Recall) / (Precision + Recall)

. Precision : 76,9%

. Recall : 37%

. Average : 56,9%

. F1 Score = 50%

. Precision : 55,7%

. Recall : 83.3%

. Average : 69,5%

. F1 Score = (2x55,7x83.3) /
(55,7+83,3) = 66%

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
F1 Score

Page 60 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

F1 Score

def f1_score(tp, fp, fn, tn):

p = precision(tp, fp, fn, tn)

r = recall(tp, fp, fn , tn)

return 2 * p * r / (p + r)

C. BUCHE - buche@enib.fr IML 61 / 114

F1 Score

def f1_score(tp, fp, fn, tn):

p = precision(tp, fp, fn, tn)

r = recall(tp, fp, fn , tn)

return 2 * p * r / (p + r)

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
F1 Score

Page 61 :

Demo : test.py

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

sklearn : Measuring the quality of a predictive algorithm

01: # Import datasets , classifiers and performance metrics

02: from sklearn import datasets , svm , metrics

03: digits = datasets.load_digits ()

04: # To apply a classifier on this data , we need to flatten the image , to

05: # turn the data in a (samples , feature) matrix:

06: n_samples = len(digits.images)

07: data = digits.images.reshape ((n_samples , -1))

08: # Create a classifier: a support vector classifier

09: classifier = svm.SVC(gamma =0.001)

10: # We learn the digits on the first half of the digits

11: classifier.fit(data[: n_samples // 2], digits.target [: n_samples // 2])

12: # Now predict the value of the digit on the second half:

13: expected = digits.target[n_samples // 2:]

14: predicted = classifier.predict(data[n_samples // 2:])

15: print("Classification report for classifier %s:\n%s\n" \

16: % (classifier , metrics.classification_report(expected , predicted)))

17: print("Confusion matrix :\n%s" % metrics.confusion_matrix(expected , predicted

))

C. BUCHE - buche@enib.fr IML 62 / 114

sklearn : Measuring the quality of a predictive algorithm

01: # Import datasets , classifiers and performance metrics

02: from sklearn import datasets , svm , metrics

03: digits = datasets.load_digits ()

04: # To apply a classifier on this data , we need to flatten the image , to

05: # turn the data in a (samples , feature) matrix:

06: n_samples = len(digits.images)

07: data = digits.images.reshape ((n_samples , -1))

08: # Create a classifier: a support vector classifier

09: classifier = svm.SVC(gamma =0.001)

10: # We learn the digits on the first half of the digits

11: classifier.fit(data[: n_samples // 2], digits.target [: n_samples // 2])

12: # Now predict the value of the digit on the second half:

13: expected = digits.target[n_samples // 2:]

14: predicted = classifier.predict(data[n_samples // 2:])

15: print("Classification report for classifier %s:\n%s\n" \

16: % (classifier , metrics.classification_report(expected , predicted)))

17: print("Confusion matrix :\n%s" % metrics.confusion_matrix(expected , predicted

))2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
sklearn : Measuring the quality of a predictive
algorithm

Page 62 :

Lines 15 and 16 show the synthesis of the mathematical measurements proposed by sklearn for the 10 classes to
be predicted (the 10 possible figures recognized) ; line 17 shows the confusion matrix, that is, a table showing the
measures that summarize the quality of the model for these 10 classes.The interest of this table is that it shows very
visually the proportion of good predictions. , and the distribution by bad prediction carried out.

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

sklearn : Measuring the quality of a predictive algorithm

Classification report for classifier SVC(C=1.0, cache_size =200, class_weight=

None , coef0 =0.0,

decision_function_shape=’ovr’, degree=3, gamma =0.001 , kernel=’rbf’,

max_iter=-1, probability=False , random_state=None , shrinking=True ,

tol =0.001 , verbose=False):

precision recall f1-score support

0 1.00 0.99 0.99 88

1 0.99 0.97 0.98 91

2 0.99 0.99 0.99 86

3 0.98 0.87 0.92 91

4 0.99 0.96 0.97 92

5 0.95 0.97 0.96 91

6 0.99 0.99 0.99 91

7 0.96 0.99 0.97 89

8 0.94 1.00 0.97 88

9 0.93 0.98 0.95 92

accuracy 0.97 899

macro avg 0.97 0.97 0.97 899

weighted avg 0.97 0.97 0.97 899

C. BUCHE - buche@enib.fr IML 63 / 114

sklearn : Measuring the quality of a predictive algorithm

Classification report for classifier SVC(C=1.0, cache_size =200, class_weight=

None , coef0 =0.0,

decision_function_shape=’ovr’, degree=3, gamma =0.001 , kernel=’rbf’,

max_iter=-1, probability=False , random_state=None , shrinking=True ,

tol =0.001 , verbose=False):

precision recall f1-score support

0 1.00 0.99 0.99 88

1 0.99 0.97 0.98 91

2 0.99 0.99 0.99 86

3 0.98 0.87 0.92 91

4 0.99 0.96 0.97 92

5 0.95 0.97 0.96 91

6 0.99 0.99 0.99 91

7 0.96 0.99 0.97 89

8 0.94 1.00 0.97 88

9 0.93 0.98 0.95 92

accuracy 0.97 899

macro avg 0.97 0.97 0.97 899

weighted avg 0.97 0.97 0.97 8992
0
1
9
-0
8
-2
9

IML
Tests

Model performance
sklearn : Measuring the quality of a predictive
algorithm

Page 63 :

Demo : measure.py

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

sklearn : Measuring the quality of a predictive algorithm

Confusion matrix:

[[87 0 0 0 1 0 0 0 0 0]

[0 88 1 0 0 0 0 0 1 1]

[0 0 85 1 0 0 0 0 0 0]

[0 0 0 79 0 3 0 4 5 0]

[0 0 0 0 88 0 0 0 0 4]

[0 0 0 0 0 88 1 0 0 2]

[0 1 0 0 0 0 90 0 0 0]

[0 0 0 0 0 1 0 88 0 0]

[0 0 0 0 0 0 0 0 88 0]

[0 0 0 1 0 1 0 0 0 90]]

C. BUCHE - buche@enib.fr IML 64 / 114

sklearn : Measuring the quality of a predictive algorithm

Confusion matrix:

[[87 0 0 0 1 0 0 0 0 0]

[0 88 1 0 0 0 0 0 1 1]

[0 0 85 1 0 0 0 0 0 0]

[0 0 0 79 0 3 0 4 5 0]

[0 0 0 0 88 0 0 0 0 4]

[0 0 0 0 0 88 1 0 0 2]

[0 1 0 0 0 0 90 0 0 0]

[0 0 0 0 0 1 0 88 0 0]

[0 0 0 0 0 0 0 0 88 0]

[0 0 0 1 0 1 0 0 0 90]]

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
sklearn : Measuring the quality of a predictive
algorithm

Page 64 :

Demo : measure.py

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 65 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 65 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 66 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 66 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 67 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 67 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 68 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 68 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 69 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 69 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 70 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 70 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

C. BUCHE - buche@enib.fr IML 71 / 114

Underfitting/overfitting

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 71 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

Underfitting/overfitting

the more data you have, the harder it is to over- fit.

C. BUCHE - buche@enib.fr IML 72 / 114

Underfitting/overfitting

the more data you have, the harder it is to over- fit.2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
Underfitting/overfitting

Page 72 :

Tests
Feature extraction

Training vs Testing
K-Fold Cross Validation
Model performance

To sum up

. Define problem (data)

. List tools (algorithms)

. Evaluate tools to find the best one

� Accuracy
� Precision
� Recall
� F1

C. BUCHE - buche@enib.fr IML 73 / 114

To sum up

. Define problem (data)

. List tools (algorithms)

. Evaluate tools to find the best one

� Accuracy
� Precision
� Recall
� F1

2
0
1
9
-0
8
-2
9

IML
Tests

Model performance
To sum up

Page 73 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

1 Tests
Training vs Testing
K-Fold Cross Validation
Model performance

2 Feature extraction
Feature
Feature extraction
Image processing : Object detection and tracking

C. BUCHE - buche@enib.fr IML 74 / 114

1 Tests
Training vs Testing
K-Fold Cross Validation
Model performance

2 Feature extraction
Feature
Feature extraction
Image processing : Object detection and tracking

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Page 74 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Features

. As we mentioned, when your data doesn’t have enough
features, your model is likely to underfit.

. When your data has too many features, it’s easy to overfit.

. What are features and where do they come from ?

Features are whatever inputs we provide to our model.

C. BUCHE - buche@enib.fr IML 75 / 114

Features

. As we mentioned, when your data doesn’t have enough
features, your model is likely to underfit.

. When your data has too many features, it’s easy to overfit.

. What are features and where do they come from ?

Features are whatever inputs we provide to our model.

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Feature
Features

Page 75 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Type of features

Type of features we have constrains the type of models we can
use :

. The Naive Bayes classifier is suited to yes-or-no features

. Regression models require numeric features

. Decision trees can deal with numeric or categorical data.

C. BUCHE - buche@enib.fr IML 76 / 114

Type of features

Type of features we have constrains the type of models we can
use :

. The Naive Bayes classifier is suited to yes-or-no features

. Regression models require numeric features

. Decision trees can deal with numeric or categorical data.

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Feature
Type of features

Page 76 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Features extraction

. feature extraction starts from an initial set of measured data
and builds derived values (features) intended to be informative
and non-redundant, facilitating the subsequent learning and
generalization steps

. Feature extraction is a dimensionality reduction process,
where an initial set of raw variables is reduced to more
manageable groups (features) for processing, while still
accurately and completely describing the original data set

C. BUCHE - buche@enib.fr IML 77 / 114

Features extraction

. feature extraction starts from an initial set of measured data
and builds derived values (features) intended to be informative
and non-redundant, facilitating the subsequent learning and
generalization steps

. Feature extraction is a dimensionality reduction process,
where an initial set of raw variables is reduced to more
manageable groups (features) for processing, while still
accurately and completely describing the original data set

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Feature extraction
Features extraction

Page 77 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Example : robot detection

Can we detect robot using low quality images ?

C. BUCHE - buche@enib.fr IML 78 / 114

Example : robot detection

Can we detect robot using low quality images ?

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Example : robot detection

Page 78 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Example : robot detection

C. BUCHE - buche@enib.fr IML 79 / 114

Example : robot detection

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Example : robot detection

Page 79 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Example : robot detection

C. BUCHE - buche@enib.fr IML 80 / 114

Example : robot detection

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Example : robot detection

Page 80 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG+SVM

. Application : Persons detector

. HOG : Histograms of Oriented Gradients

. The intent of a feature descriptor is to generalize the object in
such a way that the same object (in this case a person)
produces as close as possible to the same feature descriptor
when viewed under different conditions. This makes the
classification task easier.

. The creators of this approach trained a Support Vector
Machine (a type of machine learning algorithm for
classification), or “SVM”, to recognize HOG descriptors of
people.

C. BUCHE - buche@enib.fr IML 81 / 114

HOG+SVM

. Application : Persons detector

. HOG : Histograms of Oriented Gradients

. The intent of a feature descriptor is to generalize the object in
such a way that the same object (in this case a person)
produces as close as possible to the same feature descriptor
when viewed under different conditions. This makes the
classification task easier.

. The creators of this approach trained a Support Vector
Machine (a type of machine learning algorithm for
classification), or “SVM”, to recognize HOG descriptors of
people.2

0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG+SVM

Page 81 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG+SVM

HOG : entire person is represented by a single feature vector

C. BUCHE - buche@enib.fr IML 82 / 114

HOG+SVM

HOG : entire person is represented by a single feature vector

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG+SVM

Page 82 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG+SVM : sliding detection

The HOG person detector uses a sliding detection window which is
moved around the image.

import the necessary packages

import imutils

import argparse

import time

import cv2

def pyramid(image , scale =1.5, minSize =(30, 30)):

yield the original image

yield image

keep looping over the pyramid

while True:

compute the new dimensions of the image and resize it

w = int(image.shape [1] / scale)

image = imutils.resize(image , width=w)

if the resized image does not meet the supplied minimum

size , then stop constructing the pyramid

if image.shape [0] < minSize [1] or image.shape [1] < minSize [0]:

break

yield the next image in the pyramid

yield image

...

C. BUCHE - buche@enib.fr IML 83 / 114

HOG+SVM : sliding detection

The HOG person detector uses a sliding detection window which is
moved around the image.

import the necessary packages

import imutils

import argparse

import time

import cv2

def pyramid(image , scale =1.5, minSize =(30, 30)):

yield the original image

yield image

keep looping over the pyramid

while True:

compute the new dimensions of the image and resize it

w = int(image.shape [1] / scale)

image = imutils.resize(image , width=w)

if the resized image does not meet the supplied minimum

size , then stop constructing the pyramid

if image.shape [0] < minSize [1] or image.shape [1] < minSize [0]:

break

yield the next image in the pyramid

yield image

...

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG+SVM : sliding detection

Page 83 :

Video : Sliding Window for Object Detection.mp4

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG+SVM : sliding detection

...

def sliding_window(image , stepSize , windowSize):

slide a window across the image

for y in range(0, image.shape [0], stepSize):

for x in range(0, image.shape[1], stepSize):

yield the current window

yield (x, y, image[y:y + windowSize [1], x:x + windowSize

[0]])

C. BUCHE - buche@enib.fr IML 84 / 114

HOG+SVM : sliding detection

...

def sliding_window(image , stepSize , windowSize):

slide a window across the image

for y in range(0, image.shape [0], stepSize):

for x in range(0, image.shape[1], stepSize):

yield the current window

yield (x, y, image[y:y + windowSize [1], x:x + windowSize

[0]])

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG+SVM : sliding detection

Page 84 :

Video : Sliding Window for Object Detection.mp4

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG+SVM : sliding detection

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser ()

ap.add_argument("-i", "--image", required=True , help="Path to the image")

args = vars(ap.parse_args ())

load the image and define the window width and height

image = cv2.imread(args["image"])

(winW , winH) = (128, 128)

loop over the image pyramid

for resized in pyramid(image , scale =1.5):

loop over the sliding window for each layer of the pyramid

for (x, y, window) in sliding_window(resized , stepSize =32, windowSize =(

winW , winH)):

if the window does not meet our desired window size , ignore it

if window.shape [0] != winH or window.shape [1] != winW:

continue

WHERE APPLY A CLASSIFIER

since we do not have a classifier , we will just draw the

window

clone = resized.copy()

cv2.rectangle(clone , (x, y), (x + winW , y + winH), (0, 255, 0),

2)

cv2.imshow("Window", clone)

cv2.waitKey (1)

time.sleep (0.025)

C. BUCHE - buche@enib.fr IML 85 / 114

HOG+SVM : sliding detection

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser ()

ap.add_argument("-i", "--image", required=True , help="Path to the image")

args = vars(ap.parse_args ())

load the image and define the window width and height

image = cv2.imread(args["image"])

(winW , winH) = (128, 128)

loop over the image pyramid

for resized in pyramid(image , scale =1.5):

loop over the sliding window for each layer of the pyramid

for (x, y, window) in sliding_window(resized , stepSize =32, windowSize =(

winW , winH)):

if the window does not meet our desired window size , ignore it

if window.shape [0] != winH or window.shape [1] != winW:

continue

WHERE APPLY A CLASSIFIER

since we do not have a classifier , we will just draw the

window

clone = resized.copy()

cv2.rectangle(clone , (x, y), (x + winW , y + winH), (0, 255, 0),

2)

cv2.imshow("Window", clone)

cv2.waitKey (1)

time.sleep (0.025)

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG+SVM : sliding detection

Page 85 :

Demo : python3 sliding window.py –image images/image.jpg

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG+SVM

. At each position of the detector window, a HOG descriptor is
computed for the detection window.

. This descriptor is then shown to the trained SVM, which
classifies it as either “person” or “not a person”.

. To recognize persons at different scales, the image is
subsampled to multiple sizes. Each of these subsampled
images is searched

C. BUCHE - buche@enib.fr IML 86 / 114

HOG+SVM

. At each position of the detector window, a HOG descriptor is
computed for the detection window.

. This descriptor is then shown to the trained SVM, which
classifies it as either “person” or “not a person”.

. To recognize persons at different scales, the image is
subsampled to multiple sizes. Each of these subsampled
images is searched

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG+SVM

Page 86 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 1 : Preprocessing

C. BUCHE - buche@enib.fr IML 87 / 114

HOG : Step 1 : Preprocessing

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 1 : Preprocessing

Page 87 :

As mentioned earlier HOG feature descriptor used for pedestrian detection is calculated on a 64x128 patch of an
image. Of course, an image may be of any size. Typically patches at multiple scales are analyzed at many image
locations. The only constraint is that the patches being analyzed have a fixed aspect ratio. In our case, the patches
need to have an aspect ratio of 1 :2. For example, they can be 100x200, 128x256, or 1000x2000 but not 101x205.
To illustrate this point I have shown a large image of size 720x475. We have selected a patch of size 100x200 for
calculating our HOG feature descriptor. This patch is cropped out of an image and resized to 64x128. Now we are
ready to calculate the HOG descriptor for this image patch.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 2 : Calculate the Gradient Images

C. BUCHE - buche@enib.fr IML 88 / 114

HOG : Step 2 : Calculate the Gradient Images

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 2 : Calculate the Gradient Images

Page 88 :

To calculate a HOG descriptor, we need to first calculate the horizontal and vertical gradients ; after all, we want to
calculate the histogram of gradients. This is easily achieved by filtering the image with the following kernels.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 2 : Calculate the Gradient Images

Read image

im = cv2.imread(’bolt.png’)

im = np.float32(im) / 255.0

Calculate gradient

gx = cv2.Sobel(img , cv2.CV_32F , 1, 0, ksize =1)

gy = cv2.Sobel(img , cv2.CV_32F , 0, 1, ksize =1)

Python Calculate gradient magnitude and direction (in degrees)

mag , angle = cv2.cartToPolar(gx , gy, angleInDegrees=True)

C. BUCHE - buche@enib.fr IML 89 / 114

HOG : Step 2 : Calculate the Gradient Images

Read image

im = cv2.imread(’bolt.png’)

im = np.float32(im) / 255.0

Calculate gradient

gx = cv2.Sobel(img , cv2.CV_32F , 1, 0, ksize =1)

gy = cv2.Sobel(img , cv2.CV_32F , 0, 1, ksize =1)

Python Calculate gradient magnitude and direction (in degrees)

mag , angle = cv2.cartToPolar(gx , gy, angleInDegrees=True)

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 2 : Calculate the Gradient Images

Page 89 :

We can also achieve the same results, by using Sobel operator in OpenCV with kernel size 1.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 2 : Calculate the Gradient Images

Left : Absolute value of x-gradient.
Center : Absolute value of y-gradient.
Right : Magnitude of gradient.

C. BUCHE - buche@enib.fr IML 90 / 114

HOG : Step 2 : Calculate the Gradient Images

Left : Absolute value of x-gradient.
Center : Absolute value of y-gradient.
Right : Magnitude of gradient.

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 2 : Calculate the Gradient Images

Page 90 :

Notice, the x-gradient fires on vertical lines and the y-gradient fires on horizontal lines. The magnitude of gradient
fires where ever there is a sharp change in intensity. None of them fire when the region is smooth. I have deliberately
left out the image showing the direction of gradient because direction shown as an image does not convey much.
The gradient image removed a lot of non-essential information (e.g. constant colored background), but highlighted
outlines. In other words, you can look at the gradient image and still easily say there is a person in the picture.
At every pixel, the gradient has a magnitude and a direction. For color images, the gradients of the three channels are
evaluated (as shown in the figure above). The magnitude of gradient at a pixel is the maximum of the magnitude
of gradients of the three channels, and the angle is the angle corresponding to the maximum gradient.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

C. BUCHE - buche@enib.fr IML 91 / 114

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 3 : Calculate Histogram of Gradients
in 8x8 cells

Page 91 :

In this step, the image is divided into 8x8 cells and a histogram of gradients is calculated for each 8x8 cells.
We will learn about the histograms in a moment, but before we go there let us first understand why we have divided
the image into 8x8 cells. One of the important reasons to use a feature descriptor to describe a patch of an image is
that it provides a compact representation. An 8x8 image patch contains 8x8x3 = 192 pixel values. The gradient of
this patch contains 2 values (magnitude and direction) per pixel which adds up to 8x8x2 = 128 numbers. By the
end of this section we will see how these 128 numbers are represented using a 9-bin histogram which can be stored
as an array of 9 numbers. Not only is the representation more compact, calculating a histogram over a patch makes
this represenation more robust to noise. Individual graidents may have noise, but a histogram over 8x8 patch makes
the representation much less sensitive to noise.
But why 8x8 patch ? Why not 32x32 ? It is a design choice informed by the scale of features we are looking for. HOG
was used for pedestrian detection initially. 8x8 cells in a photo of a pedestrian scaled to 64x128 are big enough to
capture interesting features (e.g. the face, the top of the head etc.).
The histogram is essentially a vector (or an array) of 9 bins (numbers) corresponding to angles 0, 20, 40, 60 . . .
160.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

Center : The RGB patch and gradients represented using arrows.
Right : The gradients in the same patch represented as numbers

C. BUCHE - buche@enib.fr IML 92 / 114

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

Center : The RGB patch and gradients represented using arrows.
Right : The gradients in the same patch represented as numbers2

0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 3 : Calculate Histogram of Gradients
in 8x8 cells

Page 92 :

If you are a beginner in computer vision, the image in the center is very informative. It shows the patch of the
image overlaid with arrows showing the gradient — the arrow shows the direction of gradient and its length shows
the magnitude. Notice how the direction of arrows points to the direction of change in intensity and the magnitude
shows how big the difference is.
On the right, we see the raw numbers representing the gradients in the 8x8 cells with one minor difference — the
angles are between 0 and 180 degrees instead of 0 to 360 degrees. These are called “unsigned” gradients because a
gradient and it’s negative are represented by the same numbers. In other words, a gradient arrow and the one 180
degrees opposite to it are considered the same. But, why not use the 0 – 360 degrees ? Empirically it has been shown
that unsigned gradients work better than signed gradients for pedestrian detection. Some implementations of HOG
will allow you to specify if you want to use signed gradients.
The next step is to create a histogram of gradients in these 8x8 cells. The histogram contains 9 bins corresponding
to angles 0, 20, 40 . . . 160.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

C. BUCHE - buche@enib.fr IML 93 / 114

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 3 : Calculate Histogram of Gradients
in 8x8 cells

Page 93 :

The following figure illustrates the process. We are looking at magnitude and direction of the gradient of the same
8x8 patch as in the previous figure. A bin is selected based on the direction, and the vote (the value that goes
into the bin) is selected based on the magnitude. Let’s first focus on the pixel encircled in blue. It has an angle (
direction) of 80 degrees and magnitude of 2. So it adds 2 to the 5th bin. The gradient at the pixel encircled using
red has an angle of 10 degrees and magnitude of 4. Since 10 degrees is half way between 0 and 20, the vote by the
pixel splits evenly into the two bins.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

C. BUCHE - buche@enib.fr IML 94 / 114

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 3 : Calculate Histogram of Gradients
in 8x8 cells

Page 94 :

There is one more detail to be aware of. If the angle is greater than 160 degrees, it is between 160 and 180, and
we know the angle wraps around making 0 and 180 equivalent. So in the example below, the pixel with angle 165
degrees contributes proportionally to the 0 degree bin and the 160 degree bin.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

C. BUCHE - buche@enib.fr IML 95 / 114

HOG : Step 3 : Calculate Histogram of Gradients in 8x8
cells

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 3 : Calculate Histogram of Gradients
in 8x8 cells

Page 95 :

The contributions of all the pixels in the 8x8 cells are added up to create the 9-bin histogram. For the patch above,
it looks like this.
In our representation, the y-axis is 0 degrees. You can see the histogram has a lot of weight near 0 and 180 degrees,
which is just another way of saying that in the patch gradients are pointing either up or down.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 4 : 16x16 Block Normalization

C. BUCHE - buche@enib.fr IML 96 / 114

HOG : Step 4 : 16x16 Block Normalization

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 4 : 16x16 Block Normalization

Page 96 :

In the previous step, we created a histogram based on the gradient of the image. Gradients of an image are sensitive
to overall lighting. If you make the image darker by dividing all pixel values by 2, the gradient magnitude will change
by half, and therefore the histogram values will change by half. Ideally, we want our descriptor to be independent of
lighting variations. In other words, we would like to “normalize” the histogram so they are not affected by lighting
variations.
Before I explain how the histogram is normalized, let’s see how a vector of length 3 is normalized.

Let’s say we have an RGB color vector [128, 64, 32]. The length of this vector is
√

1282 + 642 + 322 = 146.64.
This is also called the L2 norm of the vector. Dividing each element of this vector by 146.64 gives us a normalized
vector [0.87, 0.43, 0.22]. Now consider another vector in which the elements are twice the value of the first vector
2 x [128, 64, 32] = [256, 128, 64]. You can work it out yourself to see that normalizing [256, 128, 64] will
result in [0.87, 0.43, 0.22], which is the same as the normalized version of the original RGB vector. You can see that
normalizing a vector removes the scale.
Now that we know how to normalize a vector, you may be tempted to think that while calculating HOG you can
simply normalize the 9x1 histogram the same way we normalized the 3x1 vector above. It is not a bad idea, but
a better idea is to normalize over a bigger sized block of 16x16. A 16x16 block has 4 histograms which can be
concatenated to form a 36 x 1 element vector and it can be normalized just the way a 3x1 vector is normalized. The
window is then moved by 8 pixels (see animation) and a normalized 36x1 vector is calculated over this window and
the process is repeated.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Step 5 : Calculate the HOG feature vector

To calculate the final feature vector for the entire image patch, the
36x1 vectors are concatenated into one giant vector. What is the
size of this vector ? Let us calculate

1 How many positions of the 16x16 blocks do we have ? There
are 7 horizontal and 15 vertical positions making a total of 7 x
15 = 105 positions.

2 Each 16x16 block is represented by a 36x1 vector. So when we
concatenate them all into one gaint vector we obtain a
36x105 = 3780 dimensional vector.

C. BUCHE - buche@enib.fr IML 97 / 114

HOG : Step 5 : Calculate the HOG feature vector

To calculate the final feature vector for the entire image patch, the
36x1 vectors are concatenated into one giant vector. What is the
size of this vector ? Let us calculate

1 How many positions of the 16x16 blocks do we have ? There
are 7 horizontal and 15 vertical positions making a total of 7 x
15 = 105 positions.

2 Each 16x16 block is represented by a 36x1 vector. So when we
concatenate them all into one gaint vector we obtain a
36x105 = 3780 dimensional vector.

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Step 5 : Calculate the HOG feature vector

Page 97 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

HOG : Visualizing Histogram of Oriented Gradients

C. BUCHE - buche@enib.fr IML 98 / 114

HOG : Visualizing Histogram of Oriented Gradients

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
HOG : Visualizing Histogram of Oriented
Gradients

Page 98 :

The HOG descriptor of an image patch is usually visualized by plotting the 9x1 normalized histograms in the 8x8
cells. See image on the side. You will notice that dominant direction of the histogram captures the shape of the
person, especially around the torso and legs.

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Frame differencing

import cv2

Compute the frame differences

def frame_diff(prev_frame , cur_frame , next_frame):

Difference between the current frame and the next frame

diff_frames_1 = cv2.absdiff(next_frame , cur_frame)

Difference between the current frame and the previous frame

diff_frames_2 = cv2.absdiff(cur_frame , prev_frame)

return cv2.bitwise_and(diff_frames_1 , diff_frames_2)

C. BUCHE - buche@enib.fr IML 99 / 114

Frame differencing

import cv2

Compute the frame differences

def frame_diff(prev_frame , cur_frame , next_frame):

Difference between the current frame and the next frame

diff_frames_1 = cv2.absdiff(next_frame , cur_frame)

Difference between the current frame and the previous frame

diff_frames_2 = cv2.absdiff(cur_frame , prev_frame)

return cv2.bitwise_and(diff_frames_1 , diff_frames_2)

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Frame differencing

Page 99 :

Demo : frame diff.py
Note : sudo chmod 777 /dev/video0

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Frame differencing

Define a function to get the current frame from the webcam

def get_frame(cap , scaling_factor):

Read the current frame from the video capture object

_, frame = cap.read()

Resize the image

frame = cv2.resize(frame , None , fx=scaling_factor ,

fy=scaling_factor , interpolation=cv2.INTER_AREA)

Convert to grayscale

gray = cv2.cvtColor(frame , cv2.COLOR_RGB2GRAY)

return gray

C. BUCHE - buche@enib.fr IML 100 / 114

Frame differencing

Define a function to get the current frame from the webcam

def get_frame(cap , scaling_factor):

Read the current frame from the video capture object

_, frame = cap.read()

Resize the image

frame = cv2.resize(frame , None , fx=scaling_factor ,

fy=scaling_factor , interpolation=cv2.INTER_AREA)

Convert to grayscale

gray = cv2.cvtColor(frame , cv2.COLOR_RGB2GRAY)

return gray

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Frame differencing

Page 100 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Frame differencing

if __name__ ==’__main__ ’:

Define the video capture object

cap = cv2.VideoCapture (0)

Define the scaling factor for the images

scaling_factor = 0.5

Grab the current frame

prev_frame = get_frame(cap , scaling_factor)

Grab the next frame

cur_frame = get_frame(cap , scaling_factor)

Grab the frame after that

next_frame = get_frame(cap , scaling_factor)

C. BUCHE - buche@enib.fr IML 101 / 114

Frame differencing

if __name__ ==’__main__ ’:

Define the video capture object

cap = cv2.VideoCapture (0)

Define the scaling factor for the images

scaling_factor = 0.5

Grab the current frame

prev_frame = get_frame(cap , scaling_factor)

Grab the next frame

cur_frame = get_frame(cap , scaling_factor)

Grab the frame after that

next_frame = get_frame(cap , scaling_factor)

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Frame differencing

Page 101 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Frame differencing

if __name__ ==’__main__ ’:

....

Keep reading the frames from the webcam

until the user hits the ’Esc’ key

while True:

Display the frame difference

cv2.imshow(’Object Movement ’, frame_diff(prev_frame ,

cur_frame , next_frame))

Update the variables

prev_frame = cur_frame

cur_frame = next_frame

Grab the next frame

next_frame = get_frame(cap , scaling_factor)

Check if the user hit the ’Esc’ key

key = cv2.waitKey (10)

if key == 27:

break

Close all the windows

cv2.destroyAllWindows ()

C. BUCHE - buche@enib.fr IML 102 / 114

Frame differencing

if __name__ ==’__main__ ’:

....

Keep reading the frames from the webcam

until the user hits the ’Esc’ key

while True:

Display the frame difference

cv2.imshow(’Object Movement ’, frame_diff(prev_frame ,

cur_frame , next_frame))

Update the variables

prev_frame = cur_frame

cur_frame = next_frame

Grab the next frame

next_frame = get_frame(cap , scaling_factor)

Check if the user hit the ’Esc’ key

key = cv2.waitKey (10)

if key == 27:

break

Close all the windows

cv2.destroyAllWindows ()

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Frame differencing

Page 102 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Background substraction

import cv2

import numpy as np

Define a function to get the current frame from the webcam

def get_frame(cap , scaling_factor):

Read the current frame from the video capture object

_, frame = cap.read()

Resize the image

frame = cv2.resize(frame , None , fx=scaling_factor ,

fy=scaling_factor , interpolation=cv2.INTER_AREA)

return frame

C. BUCHE - buche@enib.fr IML 103 / 114

Background substraction

import cv2

import numpy as np

Define a function to get the current frame from the webcam

def get_frame(cap , scaling_factor):

Read the current frame from the video capture object

_, frame = cap.read()

Resize the image

frame = cv2.resize(frame , None , fx=scaling_factor ,

fy=scaling_factor , interpolation=cv2.INTER_AREA)

return frame

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Background substraction

Page 103 :

Demo : background sub.py

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Background substraction

if __name__ ==’__main__ ’:

Define the video capture object

cap = cv2.VideoCapture (0)

Define the background subtractor object

bg_subtractor = cv2.createBackgroundSubtractorMOG2 ()

Define the number of previous frames to use to learn.

This factor controls the learning rate of the algorithm.

The learning rate refers to the rate at which your model

will learn about the background. Higher value for

"history" indicates a slower learning rate. You can

play with this parameter to see how it affects the output.

history = 100

Define the learning rate

learning_rate = 1.0/ history

C. BUCHE - buche@enib.fr IML 104 / 114

Background substraction

if __name__ ==’__main__ ’:

Define the video capture object

cap = cv2.VideoCapture (0)

Define the background subtractor object

bg_subtractor = cv2.createBackgroundSubtractorMOG2 ()

Define the number of previous frames to use to learn.

This factor controls the learning rate of the algorithm.

The learning rate refers to the rate at which your model

will learn about the background. Higher value for

"history" indicates a slower learning rate. You can

play with this parameter to see how it affects the output.

history = 100

Define the learning rate

learning_rate = 1.0/ history2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Background substraction

Page 104 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Background substraction

if __name__ ==’__main__ ’:

.....

Keep reading the frames from the webcam

until the user hits the ’Esc’ key

while True:

Grab the current frame

frame = get_frame(cap , 0.5)

Compute the mask

mask = bg_subtractor.apply(frame , learningRate=learning_rate)

Convert grayscale image to RGB color image

mask = cv2.cvtColor(mask , cv2.COLOR_GRAY2BGR)

Display the images

cv2.imshow(’Input ’, frame)

cv2.imshow(’Output ’, mask & frame)

Check if the user hit the ’Esc’ key

c = cv2.waitKey (10)

if c == 27:

break

Release the video capture object

cap.release ()

Close all the windows

cv2.destroyAllWindows ()C. BUCHE - buche@enib.fr IML 105 / 114

Background substraction

if __name__ ==’__main__ ’:

.....

Keep reading the frames from the webcam

until the user hits the ’Esc’ key

while True:

Grab the current frame

frame = get_frame(cap , 0.5)

Compute the mask

mask = bg_subtractor.apply(frame , learningRate=learning_rate)

Convert grayscale image to RGB color image

mask = cv2.cvtColor(mask , cv2.COLOR_GRAY2BGR)

Display the images

cv2.imshow(’Input ’, frame)

cv2.imshow(’Output ’, mask & frame)

Check if the user hit the ’Esc’ key

c = cv2.waitKey (10)

if c == 27:

break

Release the video capture object

cap.release ()

Close all the windows

cv2.destroyAllWindows ()

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
Background substraction

Page 105 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

. Color space tracker : define the color first.

. CAMShift : consider a region of interest

. Select the region

C. BUCHE - buche@enib.fr IML 106 / 114

CAMShift

. Color space tracker : define the color first.

. CAMShift : consider a region of interest

. Select the region

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 106 :

Demo : colorspacing.py
Demo : camshift.py

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

import cv2

import numpy as np

Define a class to handle object tracking related functionality

class ObjectTracker(object):

def __init__(self , scaling_factor =0.5):

Initialize the video capture object

self.cap = cv2.VideoCapture (0)

Capture the frame from the webcam

_, self.frame = self.cap.read()

Scaling factor for the captured frame

self.scaling_factor = scaling_factor

Resize the frame

self.frame = cv2.resize(self.frame , None ,

fx=self.scaling_factor , fy=self.scaling_factor ,

interpolation=cv2.INTER_AREA)

Create a window to display the frame

cv2.namedWindow(’Object Tracker ’)

Set the mouse callback function to track the mouse

cv2.setMouseCallback(’Object Tracker ’, self.mouse_event)

Initialize variable related to rectangular region selection

self.selection = None

Initialize variable related to starting position

self.drag_start = None

Initialize variable related to the state of tracking

self.tracking_state = 0

C. BUCHE - buche@enib.fr IML 107 / 114

CAMShift

import cv2

import numpy as np

Define a class to handle object tracking related functionality

class ObjectTracker(object):

def __init__(self , scaling_factor =0.5):

Initialize the video capture object

self.cap = cv2.VideoCapture (0)

Capture the frame from the webcam

_, self.frame = self.cap.read()

Scaling factor for the captured frame

self.scaling_factor = scaling_factor

Resize the frame

self.frame = cv2.resize(self.frame , None ,

fx=self.scaling_factor , fy=self.scaling_factor ,

interpolation=cv2.INTER_AREA)

Create a window to display the frame

cv2.namedWindow(’Object Tracker ’)

Set the mouse callback function to track the mouse

cv2.setMouseCallback(’Object Tracker ’, self.mouse_event)

Initialize variable related to rectangular region selection

self.selection = None

Initialize variable related to starting position

self.drag_start = None

Initialize variable related to the state of tracking

self.tracking_state = 0

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 107 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

Define a method to track the mouse events

def mouse_event(self , event , x, y, flags , param):

Convert x and y coordinates into 16-bit numpy integers

x, y = np.int16([x, y])

Check if a mouse button down event has occurred

if event == cv2.EVENT_LBUTTONDOWN:

self.drag_start = (x, y)

self.tracking_state = 0

Check if the user has started selecting the region

if self.drag_start:

if flags & cv2.EVENT_FLAG_LBUTTON:

Extract the dimensions of the frame

h, w = self.frame.shape [:2]

Get the initial position

xi, yi = self.drag_start

Get the max and min values

x0, y0 = np.maximum(0, np.minimum ([xi, yi], [x, y]))

x1, y1 = np.minimum ([w, h], np.maximum ([xi, yi], [x, y]))

Reset the selection variable

self.selection = None

Finalize the rectangular selection

if x1 -x0 > 0 and y1 -y0 > 0:

self.selection = (x0, y0, x1, y1)

C. BUCHE - buche@enib.fr IML 108 / 114

CAMShift

Define a method to track the mouse events

def mouse_event(self , event , x, y, flags , param):

Convert x and y coordinates into 16-bit numpy integers

x, y = np.int16([x, y])

Check if a mouse button down event has occurred

if event == cv2.EVENT_LBUTTONDOWN:

self.drag_start = (x, y)

self.tracking_state = 0

Check if the user has started selecting the region

if self.drag_start:

if flags & cv2.EVENT_FLAG_LBUTTON:

Extract the dimensions of the frame

h, w = self.frame.shape [:2]

Get the initial position

xi, yi = self.drag_start

Get the max and min values

x0, y0 = np.maximum(0, np.minimum ([xi, yi], [x, y]))

x1, y1 = np.minimum ([w, h], np.maximum ([xi, yi], [x, y]))

Reset the selection variable

self.selection = None

Finalize the rectangular selection

if x1 -x0 > 0 and y1 -y0 > 0:

self.selection = (x0, y0, x1, y1)

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 108 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

else:

If the selection is done , start tracking

self.drag_start = None

if self.selection is not None:

self.tracking_state = 1

Method to start tracking the object

def start_tracking(self):

Iterate until the user presses the Esc key

while True:

Capture the frame from webcam

_, self.frame = self.cap.read()

Resize the input frame

self.frame = cv2.resize(self.frame , None ,

fx=self.scaling_factor , fy=self.scaling_factor ,

interpolation=cv2.INTER_AREA)

Create a copy of the frame

vis = self.frame.copy()

Convert the frame to HSV colorspace

hsv = cv2.cvtColor(self.frame , cv2.COLOR_BGR2HSV)

Create the mask based on predefined thresholds

mask = cv2.inRange(hsv , np.array ((0., 60., 32.)),

np.array ((180. , 255., 255.)))

C. BUCHE - buche@enib.fr IML 109 / 114

CAMShift

else:

If the selection is done , start tracking

self.drag_start = None

if self.selection is not None:

self.tracking_state = 1

Method to start tracking the object

def start_tracking(self):

Iterate until the user presses the Esc key

while True:

Capture the frame from webcam

_, self.frame = self.cap.read()

Resize the input frame

self.frame = cv2.resize(self.frame , None ,

fx=self.scaling_factor , fy=self.scaling_factor ,

interpolation=cv2.INTER_AREA)

Create a copy of the frame

vis = self.frame.copy()

Convert the frame to HSV colorspace

hsv = cv2.cvtColor(self.frame , cv2.COLOR_BGR2HSV)

Create the mask based on predefined thresholds

mask = cv2.inRange(hsv , np.array ((0., 60., 32.)),

np.array ((180. , 255., 255.)))

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 109 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

Method to start tracking the object

def start_tracking(self):

.....

Check if the user has selected the region

if self.selection:

Extract the coordinates of the selected rectangle

x0, y0 , x1 , y1 = self.selection

Extract the tracking window

self.track_window = (x0 , y0 , x1-x0 , y1 -y0)

Extract the regions of interest

hsv_roi = hsv[y0:y1 , x0:x1]

mask_roi = mask[y0:y1 , x0:x1]

Compute the histogram of the region of

interest in the HSV image using the mask

hist = cv2.calcHist([hsv_roi], [0], mask_roi ,

[16], [0, 180])

C. BUCHE - buche@enib.fr IML 110 / 114

CAMShift

Method to start tracking the object

def start_tracking(self):

.....

Check if the user has selected the region

if self.selection:

Extract the coordinates of the selected rectangle

x0, y0 , x1 , y1 = self.selection

Extract the tracking window

self.track_window = (x0 , y0 , x1-x0 , y1 -y0)

Extract the regions of interest

hsv_roi = hsv[y0:y1 , x0:x1]

mask_roi = mask[y0:y1 , x0:x1]

Compute the histogram of the region of

interest in the HSV image using the mask

hist = cv2.calcHist([hsv_roi], [0], mask_roi ,

[16], [0, 180])2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 110 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

Method to start tracking the object

def start_tracking(self):

.....

Normalize and reshape the histogram

cv2.normalize(hist , hist , 0, 255, cv2.NORM_MINMAX);

self.hist = hist.reshape (-1)

Extract the region of interest from the frame

vis_roi = vis[y0:y1 , x0:x1]

Compute the image negative (for display only)

cv2.bitwise_not(vis_roi , vis_roi)

vis[mask == 0] = 0

C. BUCHE - buche@enib.fr IML 111 / 114

CAMShift

Method to start tracking the object

def start_tracking(self):

.....

Normalize and reshape the histogram

cv2.normalize(hist , hist , 0, 255, cv2.NORM_MINMAX);

self.hist = hist.reshape (-1)

Extract the region of interest from the frame

vis_roi = vis[y0:y1 , x0:x1]

Compute the image negative (for display only)

cv2.bitwise_not(vis_roi , vis_roi)

vis[mask == 0] = 0

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 111 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

Method to start tracking the object

def start_tracking(self):

....

Check if the system in the "tracking" mode

if self.tracking_state == 1:

Reset the selection variable

self.selection = None

Compute the histogram back projection

hsv_backproj = cv2.calcBackProject ([hsv], [0],

self.hist , [0, 180], 1)

Compute bitwise AND between histogram

backprojection and the mask

hsv_backproj &= mask

Define termination criteria for the tracker

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT ,

10, 1)

C. BUCHE - buche@enib.fr IML 112 / 114

CAMShift

Method to start tracking the object

def start_tracking(self):

....

Check if the system in the "tracking" mode

if self.tracking_state == 1:

Reset the selection variable

self.selection = None

Compute the histogram back projection

hsv_backproj = cv2.calcBackProject ([hsv], [0],

self.hist , [0, 180], 1)

Compute bitwise AND between histogram

backprojection and the mask

hsv_backproj &= mask

Define termination criteria for the tracker

term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT ,

10, 1)

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 112 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

CAMShift

Method to start tracking the object

def start_tracking(self):

....

Apply CAMShift on ’hsv_backproj ’

track_box , self.track_window = cv2.CamShift(hsv_backproj ,

self.track_window , term_crit)

Draw an ellipse around the object

cv2.ellipse(vis , track_box , (0, 255, 0), 2)

Show the output live video

cv2.imshow(’Object Tracker ’, vis)

Stop if the user hits the ’Esc’ key

c = cv2.waitKey (5)

if c == 27:

break

Close all the windows

cv2.destroyAllWindows ()

if __name__ == ’__main__ ’:

ObjectTracker ().start_tracking ()

C. BUCHE - buche@enib.fr IML 113 / 114

CAMShift

Method to start tracking the object

def start_tracking(self):

....

Apply CAMShift on ’hsv_backproj ’

track_box , self.track_window = cv2.CamShift(hsv_backproj ,

self.track_window , term_crit)

Draw an ellipse around the object

cv2.ellipse(vis , track_box , (0, 255, 0), 2)

Show the output live video

cv2.imshow(’Object Tracker ’, vis)

Stop if the user hits the ’Esc’ key

c = cv2.waitKey (5)

if c == 27:

break

Close all the windows

cv2.destroyAllWindows ()

if __name__ == ’__main__ ’:

ObjectTracker ().start_tracking ()2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking
CAMShift

Page 113 :

Tests
Feature extraction

Feature
Feature extraction
Image processing : Object detection and tracking

Tests & Features
IML

Cédric Buche

ENIB

29 août 2019

C. BUCHE - buche@enib.fr IML 114 / 114

Tests & Features
IML

Cédric Buche

ENIB

29 août 2019

2
0
1
9
-0
8
-2
9

IML
Feature extraction

Image processing : Object detection and tracking

Page 114 :

	Tests
	Feature extraction

