

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML)

1 Machine Learning

- Linear regression
- Polynomial regression
- Naive Bayes
- Decision Tree
- Logistic regression
- Neural network
- SVM
- Dataset
- Learning Mode
- 2 Human Computer Interaction (HCI)
- 3 Interactive Machine Learning (IML)

Introduction IML Cédric Buche ENIB 6 juillet 2018

Page 2 :

IML

Page 1 :

2018-07-06

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Neural network SVM Dataset

1 Machine Learning

- Linear regression
- Polynomial regression
- Naive Bayes
- Decision Tree
- Logistic regression
- Neural network
- SVM
- Dataset
- Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

C. BUCHE - buche@enib.fr IM

3 / 91

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML)

Human vs Machine

Learn from past experiences

Need to be programmed Learn from past

experiences?

IML 90-20-8102

Muchine Learning
 Linear regression
 Polymonial segnstion
 Polymonial segnstion
 Naive Bayes
 Decision Tree
 Logistic regression
 Neural Interfer
 SVM
 Datast
 Learning Mode
 Mensective Machine Learning ()

Page 3 :

Page 4 :

Human vs Machine

Traditional Programming

Machine Learning

IML 2018-07-06 └─Machine Learning

Human vs Machine

Ľ

Page 5 :

Page 6 :

Goals

Classification

- ♦ Is this cancer?
- ◊ What did you say?

Prediction

- $\diamond\,$ which advertisement a shopper is most likely to click on ?
- ♦ which football team is going to win the Super Bowl?

C. BUCHE - buche@enib.fr IML

7 / 91

8 / 91

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML)

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM

\$20,000

\$300,000

C. BUCHE - buche@enib.fr IML

?

IML 2018-07-06 └─Machine Learning Goals

 Is this cance
 What did ye
 Prediction
 which advert shopper is most likely to click on

Page 7 :

IML

Page 8 :

Machine Learning

Linear regression

2018-07-06

Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM 2018-07-06 Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Example : Price of a house Page 9 :

Linear regression

C. BUCHE - buche@enib.fr IML

└─Machine Learning Linear regression Example : Price of a house

6305, 100 x21.000

Page 10 :

Example : Price of a house

Linear regression

Polynomial regression Naive Bayes Decision Tree

C. BUCHE - buche@enib.fr IML

Page 11 :

٠

٠

Page 12 :

Linear regression

Polynomial regression Naive Bayes Decision Tree

Example : Price of a house

13 / 91

... . . \$35,800

Page 13 :

Page 14 :

Linear regression

Polynomial regression Naive Bayes Decision Tree

Example : Price of a house

C. BUCHE - buche@enib.fr

15 / 91

Page 15 :

Page 16 :

Linear Regression

Linear regression

$y_i = \beta * x_i + \alpha + \epsilon_i$

 ϵ_i is a (hopefully small) error term representing the fact that there are other factors not accounted for by this simple model.

Linear Regression

Page 17 :

. .

IML Machine Learning 2018-07-06 Linear regression $y_i = \beta * x_i + \alpha + \epsilon_i$ Linear Regression c; is a (hopefully small) error term representing the fact that there are other factors not accounted for by this simple model.

Page 18 :

Linear regression Polynomial regress Naive Bayes Decision Tree Cl) Logistic regressior Neural network SVM

Linear Regression

Assuming we've determined such an alpha and beta, then we make predictions simply with :

C. BUCHE - buche@enib.fr IML 19 / 91 Linear regression Polynomial regression Naive Bayes Decision Tree Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Linear Regression How do we choose α and β ? How bad this line is ?

Assuming we've determined such an alpha and beta, then we make predictions simply with : an predictions $(s_{\rm max},s_{\rm max},s_{\rm max})$

Page 20 :

IML

Page 19

└─Machine Learning

Linear regression

Linear Regression

2018-07-06

Linear regression

Linear Regression

Any choice of α and β gives us a predicted output for each input x_i . Since we know the actual output y_i we can compute the error for each pair :

```
def error ( alpha , beta , x\_i , y\_i ):
        return y_i - predict ( alpha , beta , x_i )
```


We'd really like to know is the total error over the entire data set. But we don't want to just add the errors — if the prediction for x_1 is too high and the prediction for x_2 is too low, the errors may just cancel out.

So instead we add up the squared errors :

```
def sum_of_squared_errors ( alpha , beta , x , y ):
       return sum ( error ( alpha , beta , x_i , y_i ) ** 2 for x_i , y_i in
            zip ( x , y ))
```


Any choice of α and β gives us a predicted output for each input x_0 . Since we know the actual output y_1 we can compute the error for each pair : $\inf_{\substack{\alpha \in \{1, \dots, n, n\}, \ \alpha \in \{1, \dots, n\}, \ \alpha \in \{1, \dots, n\}}} \inf_{\substack{\alpha \in \{1, \dots, n\}, \ \alpha \in \{1, \dots, n\}, \ \alpha \in \{1, \dots, n\}}} \inf_{\substack{\alpha \in \{1, \dots, n\}, \ \alpha \in \{1, \dots, n\}, \ \alpha \in \{1, \dots, n\}}} h_{\alpha}(x_{\alpha}) = h_{\alpha}(x_{\alpha}) + h_{\alpha}(x_{\alpha}$

Page 21 :

Linear regression Linear Regression

We'd really like to know is the total error over the entire dat But we don't want to just add the errors. — if the prediction for x₀ is too high and the prediction for x₂ is too low, the errors may just cancel out. So instead we add up the squared errors : daf som_af_aquarad_arrors (alpha , hota , s , y): resons non (arror (alpha , hota , s,i , y,i

Page 22 :

Linear Regression

The least squares solution is to choose the α and β that make sum_of_squared_errors as small as possible. Using calculus (or tedious algebra), the error-minimizing alpha and beta are given by :

Linear regression

```
def least_squares_fit ( x , y ):
       beta = correlation (x, y) * standard_deviation (y) /
           standard_deviation ( x )
       alpha = mean ( y ) - beta * mean ( x )
       return alpha , beta
```


The least squares solution is to choose the α and β that make sum of aquared errors as small as possible. Using calculus (or tedious algebra), the error-minimizing alpha and beta are given by $\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

Page 23 :

Without going through the exact mathematics, let's think about why this might be a reasonable solution. The choice of alpha simply says that when we see the average value of the independent variable x, we predict the average value of the dependent variable y. The choice of beta means that when the input value increases by standard_deviation(x), the prediction increases by correlation(x, y) *standard_deviation(y). In the case when x and y are perfectly correlated, a one standard deviation increase in x results in a one-standard-deviation-of-y increase in the prediction. When they're perfectly anticorrelated, the increase in x results in a decrease in the prediction. And when the correlation is zero, beta is zero, which means that changes in x don't affect the prediction at all.

Page 24 :

Linear regression Polynomial regres Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Linear Regression

Linear Regression

Of course, we need a better way to figure out how well we've fit the data than staring at the graph. A common measure is the coefficient of determination (or R-squared), which measures the fraction of the total variation in the dependent variable that is captured by the model :

```
def total_sum_of_squares ( y ):
    return sum ( v ** 2 for v in de_mean ( y ))
def r_squared ( alpha , beta , x , y ):
    return 1.0 - ( sum_of_squared_errors ( alpha , beta , x , y ) /
        total_sum_of_squares ( y ))
```


Linear Regression

Page 25 :

Page 26 :

Now, we chose the alpha and beta that minimized the sum of the squared prediction errors. One linear model we could have chosen is "always predict mean(y)" (corresponding to alpha = mean(y) and beta = 0), whose sum of squared crors exactly equals its total sum of squares. This means an R-squared of zero, which indicates a model that (obviously, in this case) performs no better than just predicting the mean. Clearly, the least squares model must be at least as good as that one, which means that the sum of the squared errors is at most the total sum of squares, which means that the R-squared must be at least zero. And the sum of squared errors must be at least 0, which means that the R-squared can be at most 1.

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Linear Regression

Page 27 :

IML 9 Machine Learning 4 Linear regression 10 Linear Regression

Page 28 :

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Linear Regression

C. BUCHE - buche@enib.fr IML

29 / 91

Page 29 :

Page 30 :

Polynomial regress Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset Lograing Mode

Linear regression

Linear Regression

If we write theta = [alpha, beta] , then we can also solve this using gradient descent :

print alpha , beta

C. BUCHE - buche@enib.fr

31 / 91

% → → Machine Learning % → Linear regression % → Linear Regression
--

Linear Expression
How the the - [Abba, back], then we can also note this using
the start of the start of

Page 31 :

Page 32 :

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM

Polynomial Regression

C. BUCHE - buche@enib.fr IML 33 / 91

Polynomial regression Polynomial Regression

Page 33 :

Page 34 :

2018-07-06 Naive Bayes Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) └─Naive Bayes Example : Spam Detector Page 35 :

Spam

Sport

IML Machine Learning 2018-07-06 └─Naive Bayes Example : Spam Detector

Page 36 :

Example : Spam Detector

Naive Bayes

C. BUCHE - buche@enib.fr

Example : Spam Detector

Page 37 :

≦____

lpare

Page 38 :

Machine Learning

Human Computer Interaction (Hr)

Interactive Machine Learning (MD)

Dataset

Lataset

Lataset
</t

C. BUCHE - buche@enib.fr

****____ ≙

lpare

🔤 🛕

And in s

Page 40 :

Example : Spam Detector

C. BUCHE - buche@enib.fr

41 / 91

Page 41 :

Δ

tor los Autor futures and Shop"

Sin 🗛

halura Solingriite Maigilie Spore

Page 42 :

Polynomial regress Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset Learning Mode

Naive Bayes

- \triangleright Let S be the event "the message is spam"
- \triangleright a vocabulary of many words $w_1, \dots w_n$
- \triangleright $P(X_i|S)$: probability that a spam message contains the ith word
- The key to Naive Bayes is making the (big) assumption that the presences (or absences) of each word are independent of one another, conditional on a message being spam or not.
- $\triangleright P(X_1 = x_1, ..., X_n = x_n | S) = P(X_1 = x_1 | S) * ... P(X_n = x_n | S)$
- ▷ Bayes's Theorem :

$$P(S | X = x) = P(X = x | S) / [P(X = x | S) + P(X = x | \neg S)]$$

C. BUCHE - buche@enib.fr IML

43 / 91

- ▷ we usually compute $p_1 * ... * p_n$ as the equivalent : $exp(log(p-1) + ... + log(p_n))$
- Imagine that in our training set the vocabulary word "data" only occurs in nonspam messages. Then we'd estimate P("data" |S) = 0
- $P(X_i|S) = (k + number of spams containing w_i)/(2k + number of spams)$

IML 2018-07-06 └─Machine Learning -Naive Bayes └─Naive Bayes

Where Bayer k is a k is a fixed on the message is signified by the star of many media $q_{m-m}, m, k \in \{1, 2, 3\}$, which the stars message contains the sh model. This sign is Narian (a) if and work as a independent of k. This sign is Narian (a) if and work as a independent of k. The sign is Narian (a) k and k and k are shown as the star of the stars of

Page 43 :

Page 44 :

Polynomial regressi Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Naive Bayes

def tokenize(message): message = message lover ()	#	convert	to
		0011010	
all_words = re . findall ("[a-z0-9']+" , message)	#	extract	the
return set (all_words) duplicates	#	remove	
def count words (training set):			

"""training_set_consists_of_pairs_(message,_is_spam)"""
counts = defaultdict (lambda : [0 , 0])
for message , is_spam in training_set :
 for word in tokenize (message):
 counts [word][0 if is_spam else 1] += 1
return counts

C. BUCHE - buche@enib.fr

45 / 91

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML)

Naive Bayes

def word_probabilities (counts , total_spams , total_non_spams , k = 0.5):
 """turn_the_word_counts_into_a_list_of_triplets_uuuuuw,up(wu|uspam)_andup
 (wu|u~spam)"""

Naive Bayes

Page 45 :

Page 46 :

Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Naive Bayes

def spam_probability (word_probs , message): message_words = tokenize (message) log_prob_if_spam = log_prob_if_not_spam = 0.0

iterate through each word in our vocabulary
for word , prob_if_spam , prob_if_not_spam in word_probs :

if *word* doesn'tuappearuinutheumessage
uuuuuuuu#uaddutheuloguprobabilityuofu_not_useeinguit
uuuuuuuu#uwhichuisulog(1u-uprobabilityuofuseeinguit)
uuuuuuuuelseu:
uuuuuuuuuulog_prob_if_spamu+=umathu.ulogu(u1.0u-uprob_if_spamu)
uuuuuuuuuuuuuuulog_prob_if_not_spamu+=umathu.ulogu(u1.0u-uprob_if_not_spamu)

UUUUUUUU prob_if_spamu=umathu.uexpu(ulog_prob_if_spamu) UUUUUUUU prob_if_not_spamu=umathu.uexpu(ulog_prob_if_not_spamu) UUUUUUUU returnuprob_if_spamu/u(uprob_if_spamu+uprob_if_not_spamu)

C. BUCHE - buche@enib.fr IML

47 / 91

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Naive Bayes

class NaiveBayesClassifier :

```
def __init__ ( self , k = 0.5 ):
    self . k = k
    self . word_probs = []
def train ( self , training_set ):
    # count spam and non-spam messages
num_spams = len ([ is_spam for message , is_spam in training_set if
    is_spam ])
num_non_spams = len ( training_set ) - num_spams
# run training data through our "pipeline"
word_counts = count_words ( training_set )
self.word_probs = word_probabilities ( word_counts , num_spams ,
    num_non_spams , self.k )
```

def classify (self , message):
 return spam_probability (self . word_probs , message)

	IML
-06	Machine Learning
0	└─ Naive Bayes
018	└─Naive Bayes
\sim	

Page 47 :

Page 48 :

Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Naive Bayes

import glob , re
modify the path with wherever you've_put_the_files
path_=_r"C:\spam**"
data_=_[]

#_glob.glob_returns_every_filename_that_matches_the_wildcarded_path for_fn_in_glob_..glob_(_path_): _____is_spam_=""ham"_not_in_fn

uuuuuuuu with open ((fn , , ' r' u) uas file : uuuuuuuu with open ((fn , i ' r' u) uas file : uuuuuuuuuuuuuuu for line in file : uuuuuuuuuuuuuuuuuuuuuuuuu for jine . ustartswith (u "Subject: "): uuuuuuuuuuuuuuuuuuuuuuuuuuuu #uremove the leading "Subject: " and keep what's left subject = re . sub (r "Subject: " , " " , line) . strip () data . append ((subject , is_spam))

C. BUCHE - buche@enib.fr

49 / 91

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Naive Bayes

random . seed (0) # just so you get the same answers as me train_data , test_data = split_data (data , 0.75)

classifier = NaiveBayesClassifier ()
classifier . train (train_data)

triplets (subject, actual is_spam, predicted spam probability)
classified = [(subject , is_spam , classifier . classify (subject)) for
 subject , is_spam in test_dta]
assume that spam_probability > 0.5 corresponds to spam prediction
and count the combinations of (actual is_spam, predicted is_spam)
counts = Counter ((is_spam , spam_probability > 0.5) for _ , is_spam ,
 spam_probability in classified)

Naive Baves

Page 49 :

Page 50 :

Polynomial regres Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Example : Recommending apps

Gender	Age	Арр
F	15	Facebook
F	25	Instagram
М	32	Snapchat
F	40	Instagram
М	12	Facebook
М	14	Facebook

Which feature (Gender or Age) is the more decisive to predict what

app will the users download?

Age < 20 : Facebook

Age > 20 :?

Age > 20: F : Instagram M : Snapchat

C. BUCHE - buche@enib.fr IML

51 / 91

buche@enib.fr

Page 51 :

Given how closely decision trees can fit themselves to their training data, it's not surprising that they have a tendency to overfit. One way of avoiding this is a technique called *random forests*, in which we build multiple decision trees and let them vote on how to classify inputs.

Page 52 :

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Logistic regression

Example : Acceptance at a University

2018-07-06	ML Machine Learning Logistic regression Example : Acceptance at a University
------------	---

Page 53 :

Page 54 :

SVM Dataset Learning M

Logistic regression

Example : Acceptance at a University

	IML	
2018-07-06	└─Machine Learning └─Logistic regression └─Example : Acceptance at a University	Example : Acce Tes Tes Market 1 New 198 Seaker, 1922 ACCPT00

nce at a L

Page 55 :

Page 56 :

ACCEPTED ??

ACCEPTED

Dataset

Logistic regression

Example : Acceptance at a University

Student 1	Student 2	Student 3
Test : 9/10	Test : 3/10	Test : 7/10
Grades : 8/10 ACCEPTED	NOT ACCEPTED	ACCEPTED ??

C. BUCHE - buche@enib.fr IML

57 / 91

Example : Acceptance at a University

Page 57 :

Station 2 Not 1959 Grades - 6/20 NOT ACCOPTED

Student 3 Not : 378 Grades - 6/33

Page 58 :

ICI) Logistic regression IL) Neural network SVM Dataset

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IN

59 / 91

Page 59 :

Page 60 :

Logistic regression

Example : Acceptance at a University

C. BUCHE - buche@enib.fr

Naive Bayes Decision Tree Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Logistic regression Example : Acceptance at a University

Page 61 :

Page 62 :

SVM Datase

Logistic regression

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IN

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Machine Learning (IML)

Page 63 :

Page 64 :

SVN Data

Logistic regression

Example : Acceptance at a University

C. BUCHE - buche@enib.fr IML

Page 65 :

Page 66 :

Logistic regression

We have an anonymized data set of about 200 users, containing each user's salary, her years of experience as a data scientist, and whether she paid for a premium account=

Logistic regression

- As is usual with categorical variables, we represent the dependent variable as either 0 (no premium account) or 1 (premium account).
- our data is in a matrix where each row is a list [experience, salary, paid_account]

IML 2018-07-06 └─Machine Learning Logistic regression Logistic regression

Splittic regression • Whose an ensemption of the set of always the years of experiments as data with the set of the set

Page 67 :

Page 68 :

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Logistic regression

▷ linear regression : $paidAccount = \beta_0 + \beta_1 * experience + \beta_2 * salary + \epsilon$

rescaled_x = rescale (x)
beta = estimate_beta (rescaled_x , y) # [0.26, 0.43, -0.43]
predictions = [predict (x_i , beta) for x_i in rescaled_x]
plt.scatter (predictions , y)
plt.xlabel ("predicted")
plt.ylabel ("actual")
plt.show ()

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Neural network

Logistic regression

▷ result (linear regression) :

n ssion

b linear regression : paidAccount = β₂ + β₂ + experience + β₂ + safary + termination (second (second

Page 69 :

Page 70 :

IML 2018-07-06 └─Machine Learning Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Logistic regression Logistic regression legistic (=): Fature 1-0 / (i = math - amp (- =)) Logistic regression Logistic regression Page 71 : ▷ logistic regression (logistic function) : def logistic (x): return 1.0 / (1 + math . exp (- x)) logistic function C. BUCHE - buche@enib.fr 71 / 91 IML 2018-07-06 └─Machine Learning ogistic rep Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML) Logistic regression Logistic regression derivative is given by Logistic regression $y_i = f(x_i\beta) + \epsilon_i$ f is the logistic funtion

Page 72 :

Logistic regression

▷ derivative is given by :

$$y_i = f(x_i\beta) + \epsilon_i$$

f is the logistic funtion

Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Logistic regression

def logistic_log_likelihood_i (x_i , y_i , beta): if y_i == 1 : return math . log (logistic (dot (x_i , beta))) else : return math . log (1 - logistic (dot (x_i , beta))) def logistic_log_likelihood (x , y , beta): return sum (logistic_log_likelihood_i (x_i , y_i , beta) for x_i , y_i in zip (x,y)) def logistic_log_gradient_i (x_i , y_i , beta): """theugradientuofutheulogulikelihooduuuuucorrespondingutoutheuithudatau point""" return [logistic_log_partial_ij (x_i , y_i , beta , j) for j , _ in enumerate (beta)] def logistic_log_gradient (x , y , beta): return reduce (vector_add , [logistic_log_gradient_i (x_i , y_i , beta) for x_i , y_i in zip (x , y)])

C. BUCHE - buche@enib.fr

73 / 91

Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

Logistic regression

random . seed (0) x_train , y_test = train_test_split (rescaled_x , y , 0.33)

want to maximize log likelihood on the training data fn = partial (logistic_log_likelihood , x_train , y_train) gradient_fn = partial (logistic_log_gradient , x_train , y_train)

pick a random starting point
beta_0 = [random . random () for _ in range (3)]

and maximize using gradient descent beta_hat = maximize_batch (fn , gradient_fn , beta_0)

Page 73 :

Page 74 :

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

	Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML)	Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset Learning Mode
SVM		

IML

C. BUCHE - buche@enib.fr

Page 75 :

Page 76 :

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network **SVM** Dataset

SVM

Linear Optimization

C. BUCHE - buche@enib.fr	IML

IML Machine Learning

Page 77 :

Page 78 :

Linear regression Polynomial regression Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset

SVM

C. BUCHE - buche@enib.fr IML

IML 90-00-00-00 00-00 00-0

··.

Page 79 :

Page 80 :

SVM : kernel trick

IML

C. BUCHE - buche@enib.fr

Page 81 :

Page 82 :

Polynomial regression Polynomial regression Decision Tree Logistic regression Neural network SVM Dataset Learning Mode

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split (xs , ys , 0.33) model . train (x_train , y_train) performance = model . test (x_test , y_test)

C. BUCHE - buche@enib.fr

83 / 91

Machine Learning Human Computer Interaction (HCI) Interactive Machine Learning (IML)

Naive Bayes Decision Tree Logistic regression Neural network SVM Dataset Learning Mode

Supervised : given a set of feature/label pairs, find a rule that predicts the label associated with a previously unseen input

 Unsupervised : given a features vectors (without labels) group them into "natural clusters" (or create labels for groups)

	IML
-00	Machine Learning
0	-Dataset
1%	
20	

Page 83 :

Page 84 :

1 Machine Learning

- Linear regression
- Polynomial regression
- Naive Bayes
- Decision Tree
- Logistic regression
- Neural network
- SVM
- Dataset
- Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

C. BUCHE - buche@enib.fr IML

85 / 91

HCI :

Communication between a human user and a computer system, referring in particular to the use of input/output devices with supporting software

IML 2018-07-06 Human Computer Interaction (HCI)

Page 85

Page 86

Vision : eyes

Sound : Ears

Touch : Body Smell : Nose Taste : Tongue

HCI

Vision : Camera Sound : Micro/speaker Touch : Keyboard/Mouse

87 / 91

1 Machine Learning

- Linear regression
- Polynomial regression
- Naive Bayes
- Decision Tree
- Logistic regression
- Neural network
- SVM
- Dataset
- Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

Page 87 :

Page 88 :

IML

- Autonomous machine learning systems : often require intense engineering effort to be effective
- ▷ How machines can interact with people to solve problems more efficiently than autonomous systems?
 - ♦ Humans interacting with robots to teach them to perform tasks
 - Humans helping virtual agents play video games given feedback on their performance

۵ ...

89 / 91

- ▶ Domain :
 - ♦ Machine Learning
 - ♦ Artificial intelligence
 - ♦ Human-computer interaction
 - ◊ Cognitive science
 - ◊ Robotics

2018-07-06	IML Interactive M IML	Aachine Learnir	ng (IML)

> Autonomous machine learning systems : often require intense engineering effort to be effective > How machines can interact with people to solve problems more efficiently than autonomous systems? < Human interactive with robusts teach them to perform tasks < Human holping urban gaves and an effective > Human holping urban gaves gaves given < futures to their performance.</p>

Page 89 :

Page 90 :

Machine Learning	
Human Computer Interaction (HCI)	
Interactive Machine Learning (IML)	

Introduction IML	
Cédric Buche	
ENIB	
6 juillet 2018	
C. BUCHE - buche@enib.fr IML	93

IML Interactive Machine Learning (IML)

Introduction AX Cédic Buche DNB é juille 2018

Page 91 :