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Any choice of α and β gives us a predicted output for each input
xi . Since we know the actual output yi we can compute the error
for each pair :

def error ( alpha , beta , x_i , y_i ):

return y_i - predict ( alpha , beta , x_i )
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We’d really like to know is the total error over the entire data set.
But we don’t want to just add the errors — if the prediction for x1

is too high and the prediction for x2 is too low, the errors may just
cancel out.
So instead we add up the squared errors :

def sum_of_squared_errors ( alpha , beta , x , y ):

return sum ( error ( alpha , beta , x_i , y_i ) ** 2 for x_i , y_i in

zip ( x , y ))
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Linear Regression

The least squares solution is to choose the α and β that make
sum of squared errors as small as possible. Using calculus (or
tedious algebra), the error-minimizing alpha and beta are given by :

def least_squares_fit ( x , y ):

beta = correlation ( x , y ) * standard_deviation ( y ) /

standard_deviation ( x )

alpha = mean ( y ) - beta * mean ( x )

return alpha , beta
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Without going through the exact mathematics, let’s think about why this might be a reasonable solution. The
choice of alpha simply says that when we see the average value of the independent variable x, we predict the
average value of the dependent variable y. The choice of beta means that when the input value increases by
standard deviation(x), the prediction increases by correlation(x, y) *standard deviation(y). In the case when x and y
are perfectly correlated, a one standard deviation increase in x results in a one-standard-deviation-of-y increase in
the prediction. When they’re perfectly anticorrelated, the increase in x results in a decrease in the prediction. And
when the correlation is zero, beta is zero, which means that changes in x don’t affect the prediction at all.
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Linear Regression

Of course, we need a better way to figure out how well we’ve fit
the data than staring at the graph. A common measure is the
coefficient of determination (or R-squared ), which measures the
fraction of the total variation in the dependent variable that is
captured by the model :

def total_sum_of_squares ( y ):

return sum ( v ** 2 for v in de_mean ( y ))

def r_squared ( alpha , beta , x , y ):

return 1.0 - ( sum_of_squared_errors ( alpha , beta , x , y ) /

total_sum_of_squares ( y ))
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Now, we chose the alpha and beta that minimized the sum of the squared prediction errors. One linear model we
could have chosen is “always predict mean(y) ” (corresponding to alpha = mean(y) and beta = 0 ), whose sum of
squared errors exactly equals its total sum of squares. This means an R-squared of zero, which indicates a model
that (obviously, in this case) performs no better than just predicting the mean. Clearly, the least squares model
must be at least as good as that one, which means that the sum of the squared errors is at most the total sum of
squares, which means that the R- squared must be at least zero. And the sum of squared errors must be at least 0,
which means that the R-squared can be at most 1.
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If we write theta = [alpha, beta] , then we can also solve this using
gradient descent :

def squared_error ( x_i , y_i , theta ):

alpha , beta = theta

return error ( alpha , beta , x_i , y_i ) ** 2

def squared_error_gradient ( x_i , y_i , theta ):

alpha , beta = theta

return [ - 2 * error ( alpha , beta , x_i , y_i ), # alpha partial deriv

- 2 * error ( alpha , beta , x_i , y_i ) * x_i ] # beta partial

deriv

# choose random value to start

random.seed ( 0 )

theta = [ random . random (), random . random ()]

alpha , beta = minimize_stochastic ( squared_error , squared_error_gradient ,

entry , entry2 , theta , 0.0001 )

print alpha , beta
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. Let S be the event “the message is spam”

. a vocabulary of many words w1, ...wn

. P(Xi |S) : probability that a spam message contains the ith
word

. The key to Naive Bayes is making the (big) assumption that
the presences (or absences) of each word are independent of
one another, conditional on a message being spam or not.

. P(X1 = x1, ...Xn = xn|S) = P(X1 = x1|S) ∗ ...P(Xn = xn|S)

. Bayes’s Theorem :
P(S |X = x) = P(X = x |S)/[P(X = x |S) + P(X = x |¬S)]
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Naive Bayes

. we usually compute p1 ∗ ... ∗ pn as the equivalent :
exp(log(p − 1) + ...+ log(pn)

. Imagine that in our training set the vocabulary word “data”
only occurs in nonspam messages. Then we’d estimate
P(”data”|S) = 0

. P(Xi |S) =
(k + numberofspamscontainingwi )/(2k + numberofspams)
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Naive Bayes

def tokenize(message):

message = message.lower () # convert to

lowercase

all_words = re . findall ( "[a-z0 -9’]+" , message ) # extract the

words

return set ( all_words ) # remove

duplicates

def count_words ( training_set ):

"""training set consists of pairs (message , is_spam)"""

counts = defaultdict ( lambda : [ 0 , 0 ])

for message , is_spam in training_set :

for word in tokenize ( message ):

counts [ word ][ 0 if is_spam else 1 ] += 1

return counts
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def word_probabilities ( counts , total_spams , total_non_spams , k = 0.5 ):

"""turn the word_counts into a list of triplets     w, p(w | spam) and p

(w | ~spam)"""

return [ ( w , ( spam + k ) / ( total_spams + 2 * k ),

( non_spam + k ) / ( total_non_spams + 2 * k )) for w ,

( spam , non_spam ) in counts . iteritems ()]
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def spam_probability ( word_probs , message ):

message_words = tokenize ( message ) log_prob_if_spam =

log_prob_if_not_spam = 0.0

# iterate through each word in our vocabulary

for word , prob_if_spam , prob_if_not_spam in word_probs :

# if *word* appears in the message ,

# add the log probability of seeing it

if word in message_words :

log_prob_if_spam += math . log ( prob_if_spam )

log_prob_if_not_spam += math . log ( prob_if_not_spam )

# if *word* doesn’t appear in the message

        # add the log probability of _not_ seeing it

        # which is log(1 - probability of seeing it)

        else :

                log_prob_if_spam += math . log ( 1.0 - prob_if_spam )

                log_prob_if_not_spam += math . log ( 1.0 - prob_if_not_spam )

        prob_if_spam = math . exp ( log_prob_if_spam )

        prob_if_not_spam = math . exp ( log_prob_if_not_spam )

        return prob_if_spam / ( prob_if_spam + prob_if_not_spam )

C. BUCHE - buche@enib.fr IML 47 / 91

Naive Bayes

def spam_probability ( word_probs , message ):

message_words = tokenize ( message ) log_prob_if_spam =

log_prob_if_not_spam = 0.0

# iterate through each word in our vocabulary

for word , prob_if_spam , prob_if_not_spam in word_probs :

# if *word* appears in the message ,

# add the log probability of seeing it

if word in message_words :

log_prob_if_spam += math . log ( prob_if_spam )

log_prob_if_not_spam += math . log ( prob_if_not_spam )

# if *word* doesn’t appear in the message

        # add the log probability of _not_ seeing it

        # which is log(1 - probability of seeing it)

        else :

                log_prob_if_spam += math . log ( 1.0 - prob_if_spam )

                log_prob_if_not_spam += math . log ( 1.0 - prob_if_not_spam )

        prob_if_spam = math . exp ( log_prob_if_spam )

        prob_if_not_spam = math . exp ( log_prob_if_not_spam )

        return prob_if_spam / ( prob_if_spam + prob_if_not_spam )

2
0
1
8
-0
7
-0
6

IML
Machine Learning

Naive Bayes
Naive Bayes

Page 47 :

Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

Linear regression
Polynomial regression
Naive Bayes
Decision Tree
Logistic regression
Neural network
SVM
Dataset
Learning Mode
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class NaiveBayesClassifier :

def __init__ ( self , k = 0.5 ):

self . k = k

self . word_probs = []

def train ( self , training_set ):

# count spam and non -spam messages

num_spams = len ([ is_spam for message , is_spam in training_set if

is_spam ])

num_non_spams = len ( training_set ) - num_spams

# run training data through our "pipeline"

word_counts = count_words ( training_set )

self.word_probs = word_probabilities ( word_counts , num_spams ,

num_non_spams , self.k )

def classify ( self , message ):

return spam_probability ( self . word_probs , message)
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import glob , re

# modify the path with wherever you’ve put the files

path = r"C:\spam \*\*"

data = []

# glob.glob returns every filename that matches the wildcarded path

for fn in glob . glob ( path ):

        is_spam = "ham" not in fn

        with open ( fn , ’r’ ) as file :

                for line in file :

                        if line . startswith ( "Subject :" ):

                        # remove the leading "Subject: " and keep what’s left

subject = re . sub ( r"^Subject: " , "" , line ) . strip

()

data . append (( subject , is_spam ))
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random . seed ( 0 ) # just so you get the same answers as me

train_data , test_data = split_data ( data , 0.75 )

classifier = NaiveBayesClassifier ()

classifier . train ( train_data )

# triplets (subject , actual is_spam , predicted spam probability)

classified = [( subject , is_spam , classifier . classify ( subject )) for

subject , is_spam in test_data ]

# assume that spam_probability > 0.5 corresponds to spam prediction

# and count the combinations of (actual is_spam , predicted is_spam)

counts = Counter (( is_spam , spam_probability > 0.5 ) for _ , is_spam ,

spam_probability in classified )
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Example : Recommending apps

Gender Age App

F 15 Facebook

F 25 Instagram

M 32 Snapchat

F 40 Instagram

M 12 Facebook

M 14 Facebook
Which feature (Gender or Age) is the more decisive to predict what
app will the users download ?
Age < 20 : Facebook
Age > 20 :?
Age > 20 : F : Instagram M : Snapchat
Decision Tree C. BUCHE - buche@enib.fr IML 51 / 91
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Logistic regression

. We have an anonymized data set of about 200 users,
containing each user’s salary, her years of experience as a data
scientist, and whether she paid for a premium account=
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Logistic regression

. As is usual with categorical variables, we represent the
dependent variable as either 0 (no premium account) or 1
(premium account).

. our data is in a matrix where each row is a list [experience,
salary, paid account]

x = [[ 1 ] + row [: 2 ] for row in data ] # each element is [1,

experience , salary]

y = [ row [ 2 ] for row in data ] # each element is paid_account

C. BUCHE - buche@enib.fr IML 68 / 91

Logistic regression

. As is usual with categorical variables, we represent the
dependent variable as either 0 (no premium account) or 1
(premium account).

. our data is in a matrix where each row is a list [experience,
salary, paid account]

x = [[ 1 ] + row [: 2 ] for row in data ] # each element is [1,

experience , salary]

y = [ row [ 2 ] for row in data ] # each element is paid_account2
0
1
8
-0
7
-0
6

IML
Machine Learning

Logistic regression
Logistic regression

Page 68 :



Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

Linear regression
Polynomial regression
Naive Bayes
Decision Tree
Logistic regression
Neural network
SVM
Dataset
Learning Mode

Logistic regression

. linear regression :
paidAccount = β0 + β1 ∗ experience + β2 ∗ salary + ε

rescaled_x = rescale ( x )

beta = estimate_beta ( rescaled_x , y ) # [0.26, 0.43, -0.43]

predictions = [ predict ( x_i , beta ) for x_i in rescaled_x ]

plt.scatter ( predictions , y )

plt.xlabel ( "predicted" )

plt.ylabel ( "actual" )

plt.show ()
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. result (linear regression) :
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Logistic regression

. logistic regression (logistic function) :

def logistic ( x ):

return 1.0 / ( 1 + math . exp ( - x ))
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Logistic regression

. derivative is given by :

def logistic_prime ( x ):

return logistic ( x ) * ( 1 - logistic ( x ))

yi = f (xiβ) + εi

f is the logistic funtion
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Logistic regression

def logistic_log_likelihood_i ( x_i , y_i , beta ):

if y_i == 1 :

return math . log ( logistic ( dot ( x_i , beta )))

else :

return math . log ( 1 - logistic ( dot ( x_i , beta )))

def logistic_log_likelihood ( x , y , beta ):

return sum ( logistic_log_likelihood_i ( x_i , y_i , beta ) for x_i ,

y_i in zip ( x , y ))

def logistic_log_gradient_i ( x_i , y_i , beta ):

"""the gradient of the log likelihood     corresponding to the ith data 

point"""

return [ logistic_log_partial_ij ( x_i , y_i , beta , j ) for j , _ in

enumerate ( beta )]

def logistic_log_gradient ( x , y , beta ):

return reduce ( vector_add , [ logistic_log_gradient_i ( x_i , y_i ,

beta ) for x_i , y_i in zip ( x , y )])
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Logistic regression

random . seed ( 0 )

x_train , x_test , y_train , y_test = train_test_split ( rescaled_x , y , 0.33 )

# want to maximize log likelihood on the training data

fn = partial ( logistic_log_likelihood , x_train , y_train )

gradient_fn = partial ( logistic_log_gradient , x_train , y_train )

# pick a random starting point

beta_0 = [ random . random () for _ in range ( 3 )]

# and maximize using gradient descent

beta_hat = maximize_batch ( fn , gradient_fn , beta_0 )
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def split_data(data ,prob):

"""split data into fractions [prob , 1 - prob]"""

results =[],[]

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x,y,test_pct):

data = zip ( x , y ) # pair corresponding values

train , test = split_data ( data , 1 - test_pct ) # split the

data set of pairs

x_train , y_train = zip ( * train ) # magical un -zip trick

x_test , y_test = zip ( * test )

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split ( xs , ys , 0.33

)

model . train ( x_train , y_train )

performance = model . test ( x_test , y_test )
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. Supervised : given a set of feature/label pairs, find a rule that
predicts the label associated with a previously unseen input

. Unsupervised : given a features vectors (without labels)
group them into “natural clusters” (or create labels for
groups)

C. BUCHE - buche@enib.fr IML 84 / 91

. Supervised : given a set of feature/label pairs, find a rule that
predicts the label associated with a previously unseen input

. Unsupervised : given a features vectors (without labels)
group them into “natural clusters” (or create labels for
groups)

2
0
1
8
-0
7
-0
6

IML
Machine Learning

Learning Mode

Page 84 :



Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

1 Machine Learning
Linear regression
Polynomial regression
Naive Bayes
Decision Tree
Logistic regression
Neural network
SVM
Dataset
Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

C. BUCHE - buche@enib.fr IML 85 / 91

1 Machine Learning
Linear regression
Polynomial regression
Naive Bayes
Decision Tree
Logistic regression
Neural network
SVM
Dataset
Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

2
0
1
8
-0
7
-0
6

IML
Human Computer Interaction (HCI)

Page 85 :

Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

HCI

C. BUCHE - buche@enib.fr IML 86 / 91

HCI

2
0
1
8
-0
7
-0
6

IML
Human Computer Interaction (HCI)

HCI

Page 86 :



Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

HCI

C. BUCHE - buche@enib.fr IML 87 / 91

HCI

2
0
1
8
-0
7
-0
6

IML
Human Computer Interaction (HCI)

HCI

Page 87 :

Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

1 Machine Learning
Linear regression
Polynomial regression
Naive Bayes
Decision Tree
Logistic regression
Neural network
SVM
Dataset
Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

C. BUCHE - buche@enib.fr IML 88 / 91

1 Machine Learning
Linear regression
Polynomial regression
Naive Bayes
Decision Tree
Logistic regression
Neural network
SVM
Dataset
Learning Mode

2 Human Computer Interaction (HCI)

3 Interactive Machine Learning (IML)

2
0
1
8
-0
7
-0
6

IML
Interactive Machine Learning (IML)

Page 88 :



Machine Learning
Human Computer Interaction (HCI)
Interactive Machine Learning (IML)

IML

. Autonomous machine learning systems : often require intense
engineering effort to be effective

. How machines can interact with people to solve problems
more efficiently than autonomous systems ?

� Humans interacting with robots to teach them to perform tasks
� Humans helping virtual agents play video games given

feedback on their performance
� ...
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� Machine Learning
� Artificial intelligence
� Human-computer interaction
� Cognitive science
� Robotics
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