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How do you think about data? Think of a spreadsheet. You have columns, rows, and cells.
The statistical perspective of machine learning frames data in the context of a hypothetical function (f ) that the
machine learning algorithm aims to learn. Given some input variables (Input) the function answer the question as
to what is the predicted output variable (Output).
Output = f (Input)
The inputs and outputs can be referred to as variables or vectors.
The computer science perspective uses a row of data to describe an entity (like a person) or an observation about an
entity. As such, the columns for a row are often referred to as attributes of the observation and the rows themselves
are called instances.
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def split_data(data ,prob):

# split data into fractions [prob , 1 - prob]

results =[],[]

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x,y,test_pct):

# pair corresponding values

data = zip ( x , y )

# split the data set of pairs

train , test = split_data ( data , 1 - test_pct )

x_train , y_train = zip ( * train )

x_test , y_test = zip ( * test )

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split ( xs , ys , 0.33

)

model . train ( x_train , y_train )

performance = model . test ( x_test , y_test )
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Hyper Parameter tuning

. the parameters of the learning phase: hyper-parameters.

. example: maximum number of values that will be tested in a
node of a decision tree, or the number of trees that will
contain a random forest.

. no formal method to find the optimal values from the training
data.

. often use exhaustive search on ranges defined by the
developer: this requires in practice to make as many learnings
as combinations of parameters. This technique is called Grid
Search. It uses one of the model’s quality metrics to select the
best set of hyper-parameters.
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Features and Label

. the ”features”: we can measure them and it is from them that
we will perform modeling and prediction.

. the ”label”: the data that we are trying to predict: in the case
of supervised learning, we have the explanatory variable in the
learning data.

C. BUCHE - buche@enib.fr IML 9 / 79

Features and Label

. the ”features”: we can measure them and it is from them that
we will perform modeling and prediction.

. the ”label”: the data that we are trying to predict: in the case
of supervised learning, we have the explanatory variable in the
learning data.

2
0
1
9
-0
8
-2
7

IML
Data preparation

Features and Label

Page 9 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Preparation of more complex data

. voice (Automatic Speech Recognition or Speech-To-Text) :
Google cloud mode or Nuance solutions

. images : Imagemagick, OpenCV2
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. data complexity: graphical analysis by data scientist

. highlight relationships between different dimensions

. quantify this relationship

. tool: linear regression
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NBA: size / weight relationship

. it is hinted that the weight must increase with size, but to
what extent?

. Is it possible to predict the weight of a player who knows his
size?
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Pandas

import pandas as pd

import matplotlib.pyplot as plt

from numpy.linalg import inv

import numpy as np

df = pd.read_csv(’players_stats.csv’)

height = df.dropna ()[’Height ’]

weight = df.dropna ()[’Weight ’]

plt.xlabel(’Height (cm)’)

plt.ylabel(’Weight (kg)’)

plt.scatter(height , weight)

plt.show()
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https://www.kaggle.com/drgilermo/nba-players-stats-20142015.
Demo : players scatter.py
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NBA: size / weight relationship

Figure: The weight of our players grows well with their size, and
moreover linearly.
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The vertical lines are artificial, and hold to the resolution of the sizes which are rounded to 2.5 cm. As for the general
trend, it seems that weight is linearly related to size.
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The mathematical tool

. establish a mathematical relationship between height and
weight

. regression: fit a mathematical model to a set of measures

. linear regression: y = a ∗ x + b where x is named predictor,
while y is the variable to predict.

. NBA, x is the size of the players, while y is their weight.

. we have a set of samples of y values for various values of x

. link model and samples:

C. BUCHE - buche@enib.fr IML 16 / 79

The mathematical tool

. establish a mathematical relationship between height and
weight

. regression: fit a mathematical model to a set of measures

. linear regression: y = a ∗ x + b where x is named predictor,
while y is the variable to predict.

. NBA, x is the size of the players, while y is their weight.

. we have a set of samples of y values for various values of x

. link model and samples:

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
The mathematical tool

Page 16 :

b is the value of the variable to predict for x = 0, which is the intercept.
If one represents the operation mentally, it is a question of sliding a rule vertically (which changes b), and of inclining
it more or less (which changes a) until the points of our sampling seems to be regularly distributed on both sides of
the rule.
In mathematical terms, we will derive the previous expression with respect to a and b, then we will seek to cancel
this derivative. Indeed, remember your high school math class: a function reaches its extremum where its derivative
vanishes.
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The mathematical tool

We will work in matrix form:

Y is a column vector containing yi
X is a matrix consisting of two columns. The first contains the
predictors xi while the second contains only 1.
A meanwhile, is a line vector containing [ab]. The derivative of e
with respect to the parameters we wish to optimize, a and b,
contained in A, is:

e reaches its minimum when this expression is null, that is:
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An example of linear data distributed according to a
Gaussian

import numpy as np

importmath

importrandom

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[ random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

Gnoise = np.random.normal (0.0 ,0.1,len(Y))

Ynoisy = np.matrix ([Y[i].item (0)+ Gnoise[i]for i inrange(len(Y))]).transpose ()

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.show()

C. BUCHE - buche@enib.fr IML 18 / 79

An example of linear data distributed according to a
Gaussian

import numpy as np

importmath

importrandom

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[ random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

Gnoise = np.random.normal (0.0 ,0.1,len(Y))

Ynoisy = np.matrix ([Y[i].item (0)+ Gnoise[i]for i inrange(len(Y))]).transpose ()

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.show()2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
An example of linear data distributed according
to a Gaussian

Page 18 :

neighborhood of an equation line y = 3 ∗ x + 0.666.
We added a Gaussian noise, of zero mean and with a standard deviation of 0.1.
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An example of linear data distributed according to a
Gaussian.

# Find a and b

A = inv(X.transpose ()*X)*X.transpose ()*Ynoisy

print(A)

>[[3.00512112]

>[0.66163949]]
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Let’s see now if we fall back on our feet, and if by applying our formula, a = 3, b = 0.666 come out of the hat.
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An example of linear data distributed according to a
Gaussian.

x =[0,1]

y =[[x[0],1],[x[1] ,1]]*A

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.plot(x, y, color=’r’)

plt.show()
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An example of linear Gaussian distributed data, and the
associated linear regression.
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NBA

import pandas as pd

import matplotlib.pyplot as plt

from numpy.linalg import inv

import numpy as np

df = pd.read_csv(’players_stats.csv’)

height = df.dropna ()[’Height ’]

weight = df.dropna ()[’Weight ’]

X = np.zeros((len(height) ,2))

X[: ,0]= height

X[: ,1]=1

Xm = np.matrix(X)
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reload the data of our set and put them in shape to apply our formula
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NBA

Y = np.matrix(weight.as_matrix ())

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*Y.transpose ()
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We thus obtain A, which contains the coefficients a, b. It remains to be seen if they provide a good approximation
of our data set, by drawing the corresponding line.
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NBA

x =[160 ,230]

y =[[x[0],1],[x[1] ,1]]*A

plt.xlabel(’Height (cm)’)

plt.ylabel(’Weight (kg)’)

plt.scatter(height , weight)

plt.plot(x, y, color=’r’)

plt.show()
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we choose two random points, with abscissa x = 160 and x1 = 230 and we calculate their ordinates
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NBA

The least squares method allows us to say that a player of 2.10m
must weigh not far from 116 kilos
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Demo : players.py
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Computer tools

This method works very well, but may become impractical if the
number of columns of X becomes too large, the cost of an
inversion being in the general case in O(n3). The memory cost can
also become prohibitive.

1 work with a subset representative of the total ensemble

2 develop an inversion algorithm

3 opt for an iterative approach, where we start from (a, b) to
converge progressively to.
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Let’s plot the error according to a

import autograd.numpy as np

from autograd import grad

import math

import random

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[ random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

def error(X, Y, a):

a = np.matrix ([[a] ,[0.666]])

e = X*a - Y

return(e.transpose ()* e).item (0)

def genError(X, Y):

return lambda a : error(X, Y, a)

err = genError(X, Y)

xs = [x *6.0/ nbSamples for x inrange(nbSamples)]

e = [err(x)for x in xs]

plt.plot(xs , e)
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X = np.matrix ([[ random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

def error(X, Y, a):

a = np.matrix ([[a] ,[0.666]])

e = X*a - Y

return(e.transpose ()* e).item (0)

def genError(X, Y):

return lambda a : error(X, Y, a)

err = genError(X, Y)

xs = [x *6.0/ nbSamples for x inrange(nbSamples)]

e = [err(x)for x in xs]

plt.plot(xs , e)
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we capture X and Y to generate a function depending only on a.
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grad_err = grad(err)

def newtonStep(f0, df, x0):

df0 = df(x0)

x1 = x0 - f0/ df0

return x1

def newtonSolver(f, df , x0):

count =0

f0 = f(x0)

whileTrue:

x0 = newtonStep(f0 , df , x0)

print("iter %d : %f"%(count , x0))

count +=1

f0 = f(x0)

if f0 < 1e-6:

break

return x0

newtonSolver(err , grad_err ,0)
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The idea is to start from a value of a, say a = 0. We calculate for this value err(a) as well as the derivative of the

error in:
to calculate the tangent, I use a little known method, which is the automatic differentiation, without us having to do
the calculation of the derivative by hand. This is done by grad(), exported from the autograd module and generating
a function of a giving the derivative in a.
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iter 0 : 1.500000

iter 1 : 2.250000

iter 2 : 2.625000

iter 3 : 2.812500

iter 4 : 2.906250

iter 5 : 2.953125

iter 6 : 2.976562

iter 7 : 2.988281

iter 8 : 2.994141

iter 9 : 2.997070

iter 10 : 2.998535

iter 11 : 2.999268

iter 12 : 2.999634

iter 13 : 2.999817

iter 14 : 2.999908

iter 15 : 2.999954
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Demo : autodiff.py (ATTENTION MARCHE PAS)
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A non-linear problem

. New York : 7 years of taxi and limousine journeys (1.1 billion
trips)

. route information for YellowCabs, GreenCabs and
ForHireVehicle (FHV)

. the FHV only have three measurements per way

. Yellow and GreenCabs:

� the distance;
� the collection point;
� the drop point;
� the price of the trip;
� the amount of the tip;
� the number of passengers.
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Data are available here: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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from JFK Airport to Manhattan’s UpperEastSide.

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

dfJ = pd.read_csv(’yellow_tripdata_2017 -01. csv’, usecols=cols)

dfF = pd.read_csv(’yellow_tripdata_2017 -02. csv’, usecols=cols)

dfM = pd.read_csv(’yellow_tripdata_2017 -03. csv’, usecols=cols)

dfA = pd.read_csv(’yellow_tripdata_2017 -04. csv’, usecols=cols)

dfMy = pd.read_csv(’yellow_tripdata_2017 -05. csv’, usecols=cols)

df = dfJ.append(dfF).append(dfM).append(dfA).append(dfMy)

#236 manhattan upper east side

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU.to_csv("JFKraw.csv", columns=cols)

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

plt.scatter(startTime , dur)
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UpperEastSide.
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In our trip database, collection and deposit points are identified by an ID. A CSV file also online specifies that JFK
has for ID 132, while Upper Manhattan is 236.
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Travel time between JFK and Upper East Side depending
on time of departure.
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Demo : JFK.py
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Cleaning

. two peaks are around 7am and 4pm

. the peak of 7am is not always a real one

. It’s a safe bet that these easy-going points are just weekend
days (and probably holidays)
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import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

dfJ = pd.read_csv(’yellow_tripdata_2017 -01. csv’, usecols=cols)

dfF = pd.read_csv(’yellow_tripdata_2017 -02. csv’, usecols=cols)

dfM = pd.read_csv(’yellow_tripdata_2017 -03. csv’, usecols=cols)

dfA = pd.read_csv(’yellow_tripdata_2017 -04. csv’, usecols=cols)

dfMy = pd.read_csv(’yellow_tripdata_2017 -05. csv’, usecols=cols)

df = dfJ.append(dfF).append(dfM).append(dfA).append(dfMy)

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU[’weekday ’]= JFK_MU[’tpep_pickup_datetime ’].apply(lambda x :parser.parse(x

).weekday ())

JFK_MU = JFK_MU[JFK_MU[’weekday ’]<5]

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

plt.scatter(startTime , dur)

plt.show()
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All aberrations (7am) are almost disappeared.
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Cerce

. example of data that clearly does not fit into a linear model

. use a linear regression: splines

� interval [xmin, xmax ] on which the spline is defined is divided
into n control points xi .

� At each of these points of control, we add a new line, which
alters the pace of the curve defined at this point.

� we build a series of functions, generally noted I iplus(x) which
are zero until xi and the value is x − xi from xi .
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def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

This allows you to start a new line at each control point. Once this
function has been defined, the calculation of the ordinate of this
spline for a given abscissa is straightforward:
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y is therefore expressed in linear form. We will therefore be able to reuse our linear regression by simply extending it
to a dimension greater than 1. Concretely, the matrix X , which up to now consisted of two columns, will henceforth
contain n + 1. The last column, corresponding b is always filled with 1. The first n, for their part, contain the result
of the application of Iiplus(x) on the abscissa of the current sample.
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def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

np.dot(x, A)
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xMin and xMax specify the bounds of the interval including all values of x, while step specifies the distance between
each node of our spline. On an interval of [0, 1] and step = 0.1 the spline is based on 10 nodes.
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Case study

import numpy as np

import math

import random

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[ random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([math.log(x[0]. item (0))for x in X]).transpose ()

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([ splinify (0.0, 1.0, 0.01, x[0]. item (0))for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*Y

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(np.asarray(X[:,0]), np.asarray(Y))

plt.scatter(np.asarray(X[:,0]), np.asarray(Yreg))

plt.show()
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We start with the construction of our dataset by filling in X with values drawn at random in [0, 1]. From there, we
populate Y by applying the logarithm function.
Then, in the same way as in the case of the right, we fill Xm with the terms of our polynomial of degree 1, using
the splinify() function. A is then calculated with the same formula, and we evaluate in the process our spline for all
the abscissae of our sample using a simple scalar product. The result is stored in Yreg.
The last three lines generate the figure, where we see that our modeling by a linear spline of our test set works very
well. It is possible to degrade the quality of this modeling by playing on the step parameter of the splinify() function.
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The logarithm function on the interval [0, 1], in blue, and its modeling by the spline, in orange. The two overlap
almost perfectly.
Demo : spline.py
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JFK → Upper Manhattan

import numpy as np

import math

import random

from numpy.linalg import inv

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

df = pd.read_csv(’JFKraw.csv’, usecols=cols)

#236 manhattan upper east side

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU[’weekday ’]= JFK_MU[’tpep_pickup_datetime ’].apply(lambda x :parser.parse(x

).weekday ())

JFK_MU = JFK_MU[JFK_MU[’weekday ’]<5]
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JFK → Upper Manhattan

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

X = startTime

Y = dur

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([[ Iplus (0.5, x), Iplus(0, x), 1]for x in X])

# Find a and b

Xm = np.matrix ([ splinify(np.min(X), np.max(X), 0.1, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(X, np.asarray(Y))

plt.scatter(X, np.asarray(Yreg))

plt.show()

C. BUCHE - buche@enib.fr IML 44 / 79

JFK → Upper Manhattan

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

X = startTime

Y = dur

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([[ Iplus (0.5, x), Iplus(0, x), 1]for x in X])

# Find a and b

Xm = np.matrix ([ splinify(np.min(X), np.max(X), 0.1, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(X, np.asarray(Y))

plt.scatter(X, np.asarray(Yreg))

plt.show()
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JFK → Upper Manhattan

overfitting: essential distinction between learning set and validation
set !!
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Compromise bias / variance

. step = 0.1 (arbitrary)

. abscissa extending to [0.25]

. our spline is found with no less than 250 nodes.

. large number of degrees of freedom: allows to deform a lot.

. principle of understood bias / variance. That is to say that the
data scientist, when he chooses a model for these data, must
arbitrate between a too simple model, which would lead to a
significant bias, and a model that is too complex, too flexible,
that generates too much variance . That’s what we just did.
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Compromise bias / variance

step = 10 (spline = 3 nodes)
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Compromise bias / variance

step = 2
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To choose the value of our step parameter, we proceeded by iteration, evaluating the quality of the obtained result.
This method has the merit of making use of the expertise of the data scientist, but in order to obtain the best result,
it is necessary to rely on more scientific criteria.
For this, it is necessary as detailed in the previous box, to have a set of learning and validation. Given these sets, it
is then possible to calculate several metrics, to quantify how well the solution models the reality.
These metrics are often measures of errors between the actual values and their prediction using the model. We can
cite for example the Mean Absolute Error (MAE) or the Root Mean Square Error (RMSE).
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Aberrant points

modeling error around 4:20. This error is due to the presence of
outliers, which are either measurement errors or extraordinary cases
of plugs, failures, etc.

# Find a and b

Xm = np.matrix ([ splinify(np.min(X), np.max(X), 1.0, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

Yfiltered = [Y[i]for i in range(len(Y)) if ((math.fabs((Y[i]-Yreg[i]) / Y[i]) <

0.9) and (Y[i] > 0.2) and(Y[i] <2.5))]

Xfiltered = [X[i]for i in range(len(Y)) if ((math.fabs((Y[i]-Yreg[i]) / Y[i]) <

0.9) and (Y[i] > 0.2) and(Y[i] <2.5))]

Xm = np.matrix ([ splinify(np.min(Xfiltered), np.max(X), 1.0, x)for x in Xfiltered

])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Yfiltered).transpose ()

Yfilteredreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.xlabel(’Heure Depart (h)’)

plt.ylabel(’Duree Trajet (h)’)

plt.scatter(X, np.asarray(Y))

plt.scatter(Xfiltered , np.asarray(Yfilteredreg))

plt.show()
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The code was developed under Ubuntu, and is available on GitHub: https://github.com/kayhman/SmartLinearReg
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Introduction

. number of variables in a dataset becomes too large.

. precise analysis in each of the dimensions, it takes a set of
measures quite gigantic

. difficult for a human to understand the relationships between
so many variables.
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Example

3 different iris species, brings together four different measures:

. the length of the sepals;

. the width of the sepals;

. the length of the petals;

. the width of the petals
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Comparisons two by two of the variables of the set

import matplotlib.pyplot as plt

from sklearn import datasets

iris = datasets.load_iris ()

labels =[’sepal length ’,’sepal width ’,’petal length ’,’petal width’]

for xx inrange (4):

for yy inrange (4):

if yy > xx:

print xx , yy

plt.xlabel(labels[xx])

plt.ylabel(labels[yy])

plt.scatter(iris.data[y==0][: , xx], iris.data[y==0][: ,yy])

plt.scatter(iris.data[y==1][: , xx], iris.data[y==1][: ,yy])

plt.scatter(iris.data[y==2][: , xx], iris.data[y==2][: ,yy])

plt.show()

C. BUCHE - buche@enib.fr IML 54 / 79

Comparisons two by two of the variables of the set

import matplotlib.pyplot as plt

from sklearn import datasets

iris = datasets.load_iris ()

labels =[’sepal length ’,’sepal width ’,’petal length ’,’petal width’]

for xx inrange (4):

for yy inrange (4):

if yy > xx:

print xx , yy

plt.xlabel(labels[xx])

plt.ylabel(labels[yy])

plt.scatter(iris.data[y==0][: , xx], iris.data[y==0][: ,yy])

plt.scatter(iris.data[y==1][: , xx], iris.data[y==1][: ,yy])

plt.scatter(iris.data[y==2][: , xx], iris.data[y==2][: ,yy])

plt.show()

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
Comparisons two by two of the variables of the
set

Page 54 :

The dimension of this set, n = 4, being reduced, the number of graphs to be plotted does not exceed n (n-1) / 2 =
6. This remains analysable by a human, and it is also easy to generate automatically these analyzes
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PCA

. Principal component analysis: reduce the size of the studied
ensemble by identifying the dimensions that carry the most
information

. if one of the predictors has the same value for all samples,
then it does not provide any information

. identify the axes that carry the most information, in an orderly
manner

. This is almost always a linear combination of predictors.
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a simple 2D case

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

plt.scatter(X0, X1)

plt.show()
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In this example, we collect the width of an object and its perimeter. Now, it turns out that all these objects are
disks. Given their width d, which is none other than their diameter, it is easy to calculate their perimeter p = d ∗π.
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The relationship between our
two predictors is clearly linear. By identifying the relationship
between them, it is possible to reduce our set to one dimension.
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import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

X = np.matrix ((X0, X1)).transpose ()

pca = PCA(n_components =2)

pca.fit(X)

print(pca.components_ [0])

print(pca.explained_variance_)
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[[ 0.30331383 0.95289072]

[ -0.95289072 0.30331383]]

[ 3.04402295e+01 2.11846137e-15]

>>> pca.components_ [0][1]/ pca.components_ [0][0]

3.1416000000000022

>>> np.dot(pca.components_ [0], pca.components_ [1])

0.0

>>> np.linalg.norm(pca.components_ [0])

1.0

>>> np.linalg.norm(pca.components_ [1])

1.0
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Note that if we do the ratio between the two coordinates of the first vector, we fall well on π.
Very important point too, if we have fun making the scalar product between these two vectors, we discover that they
are orthogonal
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The first axis, the one with the greatest eigenvalue, is enough to
capture our whole
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the matrix presented above can be considered, in the case 2D at
least, as a rotation matrix.
import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

X = np.matrix ((X0, X1)).transpose ()

pca = PCA(n_components =2)

X_r = pca.fit(X).transform(X)

print(pca.components_)

print(pca.singular_values_)

plt.scatter(X_r[:,0], X_r [: ,1])

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.show()
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No doubt, the second dimension of our 2D case definitely does not
help.
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PCA and iris

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris ()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components =4)

X_r = pca.fit(X).transform(X)

colors =[’navy’,’turquoise ’,’darkorange ’]

lw =2

for color , i, target_name inzip(colors ,[0,1,2], target_names):

plt.scatter(X_r[y == i,0], X_r[y == i,1], color=color , alpha=.8, lw=lw ,

label=target_name)

plt.legend(loc=’best’, shadow=False , scatterpoints =1)

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.title(’PCA of IRIS dataset ’)

plt.show()
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Principal component analysis automatically provides a
representation that separates the different types of iris.
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PCA et iris

>>> print(pca.components_)

[[0.36158968 -0.082268890.856572110.35884393]

[0.656539880.72971237 -0.1757674 -0.07470647]

[ -0.580997280.596418090.072524080.54906091]

[0.31725455 -0.32409435 -0.479718990.75112056]]

>>> print(pca.exaplained_variances_)

[25.089863986.007852543.420535381.87850234]

a lot of the information is contained in the first dimension
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BIPLOT

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris ()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components =4)

X_r = pca.fit(X).transform(X)

colors =[’navy’,’turquoise ’,’darkorange ’]

lw =2

for color , i, target_name inzip(colors ,[0,1,2], target_names):

plt.scatter(X_r[y == i,0], X_r[y == i,1], color=color , alpha=.8, lw=lw ,

label=target_name)

plt.legend(loc=’best’, shadow=False , scatterpoints =1)

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.title(’PCA of IRIS dataset ’)

props =["sepal length","sepal width","petal length","petal width"]

for i inrange (4):

x = pca.components_ [0][i]

y = pca.components_ [1][i]

plt.arrow(0,0, x, y, head_width =0.05, head_length =0.1, fc=’k’, ec=’k’)

plt.text(x, y, props[i])

plt.show()
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biplot: display on a 2D graph the maximum of information on all dimensions of the problem. This tool allows to
display several dimensions in only two dimensions.
For this, we start from the projection of our data in the 2D plane described by the first two main components of our
analysis. Then we display in the form of 2D vectors the initial dimensions of the problem considered.
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# moyenne de la longueur du petale - setosa

np.std(iris.data[y==0][: ,2])

# -> 0.17176728442867112

# moyenne de la longueur du petale - versicolor

np.std(iris.data[y==1][: ,2])

# -> 0.4651881339845203

# moyenne de la longueur du petale - virginica

np.std(iris.data[y==2][: ,2])

# -> 0.54634787452684397

The length of the petals of the setosa is clearly smaller than for
versicolor and virginica.
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# moyenne de la Largeur du sepale - setosa

np.std(iris.data[y==0][: ,1])

# -> 0.37719490982779713

# moyenne de la Largeur du sepale - versicolor

np.std(iris.data[y==1][: ,1])

# -> 0.31064449134018135

# moyenne de la Largeur du sepale - virginica

np.std(iris.data[y==2][: ,1])

# -> 0.31925538366643091

In this case, the values are very close: it is not a good parameter
to distinguish the different species.
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Normalization

. Principal component analysis provides a series of analysis axes
that capture the variability of the data studied, in descending
order.

. The data thus spread widely along the first axis, while they
are fairly condensed around the last one.

. If the data are not normalized, that is, if they have not been
reworked in such a way that their averages are zero, and their
standard deviations are 1.0, then the analysis may be skewed
by differences in units used.
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Raw data

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

plt.scatter(pe[’price ’], pe[’engine ’])

plt.xlabel(’price ’)

plt.ylabel(’engine ’)

plt.show()
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To illustrate the importance of standardization, we will focus on two variables: price and engine capacity. The price
is given in dollars, while the cubic capacity is in liters. Without normalization, we compare data that have very
different scales, which bias the result.
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These data, raw, give the impression that cars are distinguished mainly by their price, since the latter varies from
10,000 to 90,000, while the cubic capacity is confined to the interval [3, 8].
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Normalized data

Let’s normalize our data: a zero mean and a standard deviation of
1

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

pe_scaled = preprocessing.scale(pe)

plot.scatter(pe_scaled [:,0], pe_scaled [:,1])

plt.xlabel(’price (norm)’)

plt.ylabel(’engine (norm)’)

plt.show()
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Normalized data

Price and displacement of cars, once standardized. These two axes
now seem to contain information.
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In essence, standardization makes the data dimensionless, allowing them to be compared without risk.
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PCA

import numpy as np

from sklearn.decomposition import PCA

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

X_scaled = preprocessing.scale(df[cols]. replace(’*’,float(’nan’)).dropna ().

as_matrix ())

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

pe_scaled = preprocessing.scale(pe)

pca = PCA(n_components =2)

# raw data

pca.fit(pe)

print(pca.explained_variance_)

# normalized data

pca.fit(pe_scaled)

print(pca.explained_variance_)
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PCA

# raw data

[ 2.32179369e+08 1.08822536e+00]

# normalized data

[ 1.69570742 0.31072345]
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The principal component analysis therefore makes the same observations as we do. In the first case, that of raw
data, it is fooled by the difference in unity between price and engine capacity, and unduly believes that most of the
information is carried by a single axis.
In the second case, the analysis is more measured because the variance of the data is not clearly driven by a single
axis.
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Correlation matrix

. in Python: C = pe scaled.transpose()*pe scaled

. This matrix contains valuable information: each element Cij
quantifies the relationship between the variables i and j . If Cij
is positive, then when i grows, then j as well. If, on the other
hand, it is negative, then j decreases while i increases.

. In the case where Cij is zero, and that’s where it gets
interesting, then the variables i and j are not correlated. They
therefore vary independently of each other.

. The particular case where the matrix is diagnonal is therefore
particularly sympathetic, because in this case, the variables
are all independent of each other.
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It is precisely in this particular case that the analysis in principal components is reduced. Indeed, the correlation
matrix C is symmetric, square, and contains real values. It is therefore possible to diagonalize it, that is to say to
find a change of reference making the directions orthogonal.
This is precisely what principal component analysis does, by calculating the eigenvectors and the eigenvalues of C.
The eigenvectors are then the new axes of analysis, while the eigenvalues make it possible to classify these axes by
variance. decreasing.
Note that for reasons of performance, we do not always proceed directly to the diagonalization of C, but rather to
the decomposition of singular values.
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