
Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Data

Cédric Buche

ENIB

August 27, 2019

C. BUCHE - buche@enib.fr IML 1 / 79

Data

Cédric Buche

ENIB

August 27, 2019

2
0
1
9
-0
8
-2
7

IML

Page 1 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis

C. BUCHE - buche@enib.fr IML 2 / 79

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis2

0
1
9
-0
8
-2
7

IML
Dataset rules

Page 2 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis

C. BUCHE - buche@enib.fr IML 3 / 79

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis2

0
1
9
-0
8
-2
7

IML
Dataset rules

Page 3 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Dataset

C. BUCHE - buche@enib.fr IML 4 / 79

Dataset

2
0
1
9
-0
8
-2
7

IML
Dataset rules

Dataset

Page 4 :

How do you think about data? Think of a spreadsheet. You have columns, rows, and cells.
The statistical perspective of machine learning frames data in the context of a hypothetical function (f) that the
machine learning algorithm aims to learn. Given some input variables (Input) the function answer the question as
to what is the predicted output variable (Output).
Output = f (Input)
The inputs and outputs can be referred to as variables or vectors.
The computer science perspective uses a row of data to describe an entity (like a person) or an observation about an
entity. As such, the columns for a row are often referred to as attributes of the observation and the rows themselves
are called instances.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

def split_data(data ,prob):

split data into fractions [prob , 1 - prob]

results =[],[]

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x,y,test_pct):

pair corresponding values

data = zip (x , y)

split the data set of pairs

train , test = split_data (data , 1 - test_pct)

x_train , y_train = zip (* train)

x_test , y_test = zip (* test)

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split (xs , ys , 0.33

)

model . train (x_train , y_train)

performance = model . test (x_test , y_test)

C. BUCHE - buche@enib.fr IML 5 / 79

def split_data(data ,prob):

split data into fractions [prob , 1 - prob]

results =[],[]

for row in data:

results [0 if random.random () < prob else 1]. append(row)

return results

def train_test_split(x,y,test_pct):

pair corresponding values

data = zip (x , y)

split the data set of pairs

train , test = split_data (data , 1 - test_pct)

x_train , y_train = zip (* train)

x_test , y_test = zip (* test)

return x_train , x_test , y_train , y_test

model = SomeKindOfModel ()

x_train , x_test , y_train , y_test = train_test_split (xs , ys , 0.33

)

model . train (x_train , y_train)

performance = model . test (x_test , y_test)

2
0
1
9
-0
8
-2
7

IML
Dataset rules

Page 5 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis

C. BUCHE - buche@enib.fr IML 6 / 79

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis2

0
1
9
-0
8
-2
7

IML
Hyper Parameter tuning

Page 6 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Hyper Parameter tuning

. the parameters of the learning phase: hyper-parameters.

. example: maximum number of values that will be tested in a
node of a decision tree, or the number of trees that will
contain a random forest.

. no formal method to find the optimal values from the training
data.

. often use exhaustive search on ranges defined by the
developer: this requires in practice to make as many learnings
as combinations of parameters. This technique is called Grid
Search. It uses one of the model’s quality metrics to select the
best set of hyper-parameters.

C. BUCHE - buche@enib.fr IML 7 / 79

Hyper Parameter tuning

. the parameters of the learning phase: hyper-parameters.

. example: maximum number of values that will be tested in a
node of a decision tree, or the number of trees that will
contain a random forest.

. no formal method to find the optimal values from the training
data.

. often use exhaustive search on ranges defined by the
developer: this requires in practice to make as many learnings
as combinations of parameters. This technique is called Grid
Search. It uses one of the model’s quality metrics to select the
best set of hyper-parameters.

2
0
1
9
-0
8
-2
7

IML
Hyper Parameter tuning

Hyper Parameter tuning

Page 7 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis

C. BUCHE - buche@enib.fr IML 8 / 79

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis2

0
1
9
-0
8
-2
7

IML
Data preparation

Page 8 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Features and Label

. the ”features”: we can measure them and it is from them that
we will perform modeling and prediction.

. the ”label”: the data that we are trying to predict: in the case
of supervised learning, we have the explanatory variable in the
learning data.

C. BUCHE - buche@enib.fr IML 9 / 79

Features and Label

. the ”features”: we can measure them and it is from them that
we will perform modeling and prediction.

. the ”label”: the data that we are trying to predict: in the case
of supervised learning, we have the explanatory variable in the
learning data.

2
0
1
9
-0
8
-2
7

IML
Data preparation

Features and Label

Page 9 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Preparation of more complex data

. voice (Automatic Speech Recognition or Speech-To-Text) :
Google cloud mode or Nuance solutions

. images : Imagemagick, OpenCV2

C. BUCHE - buche@enib.fr IML 10 / 79

Preparation of more complex data

. voice (Automatic Speech Recognition or Speech-To-Text) :
Google cloud mode or Nuance solutions

. images : Imagemagick, OpenCV2

2
0
1
9
-0
8
-2
7

IML
Data preparation

Preparation of more complex data

Page 10 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis

C. BUCHE - buche@enib.fr IML 11 / 79

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis2

0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Page 11 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Introduction

. data complexity: graphical analysis by data scientist

. highlight relationships between different dimensions

. quantify this relationship

. tool: linear regression

C. BUCHE - buche@enib.fr IML 12 / 79

Introduction

. data complexity: graphical analysis by data scientist

. highlight relationships between different dimensions

. quantify this relationship

. tool: linear regression

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Introduction
Introduction

Page 12 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

NBA: size / weight relationship

. it is hinted that the weight must increase with size, but to
what extent?

. Is it possible to predict the weight of a player who knows his
size?

C. BUCHE - buche@enib.fr IML 13 / 79

NBA: size / weight relationship

. it is hinted that the weight must increase with size, but to
what extent?

. Is it possible to predict the weight of a player who knows his
size?

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
NBA: size / weight relationship

Page 13 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Pandas

import pandas as pd

import matplotlib.pyplot as plt

from numpy.linalg import inv

import numpy as np

df = pd.read_csv(’players_stats.csv’)

height = df.dropna ()[’Height ’]

weight = df.dropna ()[’Weight ’]

plt.xlabel(’Height (cm)’)

plt.ylabel(’Weight (kg)’)

plt.scatter(height , weight)

plt.show()

C. BUCHE - buche@enib.fr IML 14 / 79

Pandas

import pandas as pd

import matplotlib.pyplot as plt

from numpy.linalg import inv

import numpy as np

df = pd.read_csv(’players_stats.csv’)

height = df.dropna ()[’Height ’]

weight = df.dropna ()[’Weight ’]

plt.xlabel(’Height (cm)’)

plt.ylabel(’Weight (kg)’)

plt.scatter(height , weight)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
Pandas

Page 14 :

https://www.kaggle.com/drgilermo/nba-players-stats-20142015.
Demo : players scatter.py

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

NBA: size / weight relationship

Figure: The weight of our players grows well with their size, and
moreover linearly.

C. BUCHE - buche@enib.fr IML 15 / 79

NBA: size / weight relationship

Figure: The weight of our players grows well with their size, and
moreover linearly.

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
NBA: size / weight relationship

Page 15 :

The vertical lines are artificial, and hold to the resolution of the sizes which are rounded to 2.5 cm. As for the general
trend, it seems that weight is linearly related to size.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

The mathematical tool

. establish a mathematical relationship between height and
weight

. regression: fit a mathematical model to a set of measures

. linear regression: y = a ∗ x + b where x is named predictor,
while y is the variable to predict.

. NBA, x is the size of the players, while y is their weight.

. we have a set of samples of y values for various values of x

. link model and samples:

C. BUCHE - buche@enib.fr IML 16 / 79

The mathematical tool

. establish a mathematical relationship between height and
weight

. regression: fit a mathematical model to a set of measures

. linear regression: y = a ∗ x + b where x is named predictor,
while y is the variable to predict.

. NBA, x is the size of the players, while y is their weight.

. we have a set of samples of y values for various values of x

. link model and samples:

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
The mathematical tool

Page 16 :

b is the value of the variable to predict for x = 0, which is the intercept.
If one represents the operation mentally, it is a question of sliding a rule vertically (which changes b), and of inclining
it more or less (which changes a) until the points of our sampling seems to be regularly distributed on both sides of
the rule.
In mathematical terms, we will derive the previous expression with respect to a and b, then we will seek to cancel
this derivative. Indeed, remember your high school math class: a function reaches its extremum where its derivative
vanishes.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

The mathematical tool

We will work in matrix form:

Y is a column vector containing yi
X is a matrix consisting of two columns. The first contains the
predictors xi while the second contains only 1.
A meanwhile, is a line vector containing [ab]. The derivative of e
with respect to the parameters we wish to optimize, a and b,
contained in A, is:

e reaches its minimum when this expression is null, that is:

C. BUCHE - buche@enib.fr IML 17 / 79

The mathematical tool

We will work in matrix form:

Y is a column vector containing yi
X is a matrix consisting of two columns. The first contains the
predictors xi while the second contains only 1.
A meanwhile, is a line vector containing [ab]. The derivative of e
with respect to the parameters we wish to optimize, a and b,
contained in A, is:

e reaches its minimum when this expression is null, that is:2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
The mathematical tool

Page 17 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

An example of linear data distributed according to a
Gaussian

import numpy as np

importmath

importrandom

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

Gnoise = np.random.normal (0.0 ,0.1,len(Y))

Ynoisy = np.matrix ([Y[i].item (0)+ Gnoise[i]for i inrange(len(Y))]).transpose ()

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.show()

C. BUCHE - buche@enib.fr IML 18 / 79

An example of linear data distributed according to a
Gaussian

import numpy as np

importmath

importrandom

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

Gnoise = np.random.normal (0.0 ,0.1,len(Y))

Ynoisy = np.matrix ([Y[i].item (0)+ Gnoise[i]for i inrange(len(Y))]).transpose ()

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.show()2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
An example of linear data distributed according
to a Gaussian

Page 18 :

neighborhood of an equation line y = 3 ∗ x + 0.666.
We added a Gaussian noise, of zero mean and with a standard deviation of 0.1.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

An example of linear data distributed according to a
Gaussian.

C. BUCHE - buche@enib.fr IML 19 / 79

An example of linear data distributed according to a
Gaussian.

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
An example of linear data distributed according
to a Gaussian.

Page 19 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

An example of linear data distributed according to a
Gaussian.

Find a and b

A = inv(X.transpose ()*X)*X.transpose ()*Ynoisy

print(A)

>[[3.00512112]

>[0.66163949]]

C. BUCHE - buche@enib.fr IML 20 / 79

An example of linear data distributed according to a
Gaussian.

Find a and b

A = inv(X.transpose ()*X)*X.transpose ()*Ynoisy

print(A)

>[[3.00512112]

>[0.66163949]]

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
An example of linear data distributed according
to a Gaussian.

Page 20 :

Let’s see now if we fall back on our feet, and if by applying our formula, a = 3, b = 0.666 come out of the hat.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

An example of linear data distributed according to a
Gaussian.

x =[0,1]

y =[[x[0],1],[x[1] ,1]]*A

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.plot(x, y, color=’r’)

plt.show()

C. BUCHE - buche@enib.fr IML 21 / 79

An example of linear data distributed according to a
Gaussian.

x =[0,1]

y =[[x[0],1],[x[1] ,1]]*A

plt.scatter(np.asarray(X[:,0]), np.asarray(Ynoisy))

plt.plot(x, y, color=’r’)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
An example of linear data distributed according
to a Gaussian.

Page 21 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

An example of linear Gaussian distributed data, and the
associated linear regression.

C. BUCHE - buche@enib.fr IML 22 / 79

An example of linear Gaussian distributed data, and the
associated linear regression.

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
An example of linear Gaussian distributed data,
and the associated linear regression.

Page 22 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

NBA

import pandas as pd

import matplotlib.pyplot as plt

from numpy.linalg import inv

import numpy as np

df = pd.read_csv(’players_stats.csv’)

height = df.dropna ()[’Height ’]

weight = df.dropna ()[’Weight ’]

X = np.zeros((len(height) ,2))

X[: ,0]= height

X[: ,1]=1

Xm = np.matrix(X)

C. BUCHE - buche@enib.fr IML 23 / 79

NBA

import pandas as pd

import matplotlib.pyplot as plt

from numpy.linalg import inv

import numpy as np

df = pd.read_csv(’players_stats.csv’)

height = df.dropna ()[’Height ’]

weight = df.dropna ()[’Weight ’]

X = np.zeros((len(height) ,2))

X[: ,0]= height

X[: ,1]=1

Xm = np.matrix(X)

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
NBA

Page 23 :

reload the data of our set and put them in shape to apply our formula

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

NBA

Y = np.matrix(weight.as_matrix ())

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*Y.transpose ()

C. BUCHE - buche@enib.fr IML 24 / 79

NBA

Y = np.matrix(weight.as_matrix ())

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*Y.transpose ()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
NBA

Page 24 :

We thus obtain A, which contains the coefficients a, b. It remains to be seen if they provide a good approximation
of our data set, by drawing the corresponding line.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

NBA

x =[160 ,230]

y =[[x[0],1],[x[1] ,1]]*A

plt.xlabel(’Height (cm)’)

plt.ylabel(’Weight (kg)’)

plt.scatter(height , weight)

plt.plot(x, y, color=’r’)

plt.show()

C. BUCHE - buche@enib.fr IML 25 / 79

NBA

x =[160 ,230]

y =[[x[0],1],[x[1] ,1]]*A

plt.xlabel(’Height (cm)’)

plt.ylabel(’Weight (kg)’)

plt.scatter(height , weight)

plt.plot(x, y, color=’r’)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
NBA

Page 25 :

we choose two random points, with abscissa x = 160 and x1 = 230 and we calculate their ordinates

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

NBA

The least squares method allows us to say that a player of 2.10m
must weigh not far from 116 kilos

C. BUCHE - buche@enib.fr IML 26 / 79

NBA

The least squares method allows us to say that a player of 2.10m
must weigh not far from 116 kilos

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
NBA

Page 26 :

Demo : players.py

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Computer tools

This method works very well, but may become impractical if the
number of columns of X becomes too large, the cost of an
inversion being in the general case in O(n3). The memory cost can
also become prohibitive.

1 work with a subset representative of the total ensemble

2 develop an inversion algorithm

3 opt for an iterative approach, where we start from (a, b) to
converge progressively to.

C. BUCHE - buche@enib.fr IML 27 / 79

Computer tools

This method works very well, but may become impractical if the
number of columns of X becomes too large, the cost of an
inversion being in the general case in O(n3). The memory cost can
also become prohibitive.

1 work with a subset representative of the total ensemble

2 develop an inversion algorithm

3 opt for an iterative approach, where we start from (a, b) to
converge progressively to.2

0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
Computer tools

Page 27 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Let’s plot the error according to a

import autograd.numpy as np

from autograd import grad

import math

import random

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

def error(X, Y, a):

a = np.matrix ([[a] ,[0.666]])

e = X*a - Y

return(e.transpose ()* e).item (0)

def genError(X, Y):

return lambda a : error(X, Y, a)

err = genError(X, Y)

xs = [x *6.0/ nbSamples for x inrange(nbSamples)]

e = [err(x)for x in xs]

plt.plot(xs , e)

C. BUCHE - buche@enib.fr IML 28 / 79

Let’s plot the error according to a

import autograd.numpy as np

from autograd import grad

import math

import random

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([3*x[0]. item (0)+ 0.666 for x in X]).transpose ()

def error(X, Y, a):

a = np.matrix ([[a] ,[0.666]])

e = X*a - Y

return(e.transpose ()* e).item (0)

def genError(X, Y):

return lambda a : error(X, Y, a)

err = genError(X, Y)

xs = [x *6.0/ nbSamples for x inrange(nbSamples)]

e = [err(x)for x in xs]

plt.plot(xs , e)

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are
Let’s plot the error according to a

Page 28 :

we capture X and Y to generate a function depending only on a.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

grad_err = grad(err)

def newtonStep(f0, df, x0):

df0 = df(x0)

x1 = x0 - f0/ df0

return x1

def newtonSolver(f, df , x0):

count =0

f0 = f(x0)

whileTrue:

x0 = newtonStep(f0 , df , x0)

print("iter %d : %f"%(count , x0))

count +=1

f0 = f(x0)

if f0 < 1e-6:

break

return x0

newtonSolver(err , grad_err ,0)

C. BUCHE - buche@enib.fr IML 29 / 79

grad_err = grad(err)

def newtonStep(f0, df, x0):

df0 = df(x0)

x1 = x0 - f0/ df0

return x1

def newtonSolver(f, df , x0):

count =0

f0 = f(x0)

whileTrue:

x0 = newtonStep(f0 , df , x0)

print("iter %d : %f"%(count , x0))

count +=1

f0 = f(x0)

if f0 < 1e-6:

break

return x0

newtonSolver(err , grad_err ,0)2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are

Page 29 :

The idea is to start from a value of a, say a = 0. We calculate for this value err(a) as well as the derivative of the

error in:
to calculate the tangent, I use a little known method, which is the automatic differentiation, without us having to do
the calculation of the derivative by hand. This is done by grad(), exported from the autograd module and generating
a function of a giving the derivative in a.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

iter 0 : 1.500000

iter 1 : 2.250000

iter 2 : 2.625000

iter 3 : 2.812500

iter 4 : 2.906250

iter 5 : 2.953125

iter 6 : 2.976562

iter 7 : 2.988281

iter 8 : 2.994141

iter 9 : 2.997070

iter 10 : 2.998535

iter 11 : 2.999268

iter 12 : 2.999634

iter 13 : 2.999817

iter 14 : 2.999908

iter 15 : 2.999954

C. BUCHE - buche@enib.fr IML 30 / 79

iter 0 : 1.500000

iter 1 : 2.250000

iter 2 : 2.625000

iter 3 : 2.812500

iter 4 : 2.906250

iter 5 : 2.953125

iter 6 : 2.976562

iter 7 : 2.988281

iter 8 : 2.994141

iter 9 : 2.997070

iter 10 : 2.998535

iter 11 : 2.999268

iter 12 : 2.999634

iter 13 : 2.999817

iter 14 : 2.999908

iter 15 : 2.999954

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are

Page 30 :

Demo : autodiff.py (ATTENTION MARCHE PAS)

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

C. BUCHE - buche@enib.fr IML 31 / 79

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

Tell me everything, and I’ll tell you who you are

Page 31 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

A non-linear problem

. New York : 7 years of taxi and limousine journeys (1.1 billion
trips)

. route information for YellowCabs, GreenCabs and
ForHireVehicle (FHV)

. the FHV only have three measurements per way

. Yellow and GreenCabs:

� the distance;
� the collection point;
� the drop point;
� the price of the trip;
� the amount of the tip;
� the number of passengers.

C. BUCHE - buche@enib.fr IML 32 / 79

A non-linear problem

. New York : 7 years of taxi and limousine journeys (1.1 billion
trips)

. route information for YellowCabs, GreenCabs and
ForHireVehicle (FHV)

. the FHV only have three measurements per way

. Yellow and GreenCabs:

� the distance;
� the collection point;
� the drop point;
� the price of the trip;
� the amount of the tip;
� the number of passengers.

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
A non-linear problem

Page 32 :

Data are available here: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

from JFK Airport to Manhattan’s UpperEastSide.

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

dfJ = pd.read_csv(’yellow_tripdata_2017 -01. csv’, usecols=cols)

dfF = pd.read_csv(’yellow_tripdata_2017 -02. csv’, usecols=cols)

dfM = pd.read_csv(’yellow_tripdata_2017 -03. csv’, usecols=cols)

dfA = pd.read_csv(’yellow_tripdata_2017 -04. csv’, usecols=cols)

dfMy = pd.read_csv(’yellow_tripdata_2017 -05. csv’, usecols=cols)

df = dfJ.append(dfF).append(dfM).append(dfA).append(dfMy)

#236 manhattan upper east side

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU.to_csv("JFKraw.csv", columns=cols)

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

plt.scatter(startTime , dur)

plt.show() C. BUCHE - buche@enib.fr IML 33 / 79

from JFK Airport to Manhattan’s UpperEastSide.

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

dfJ = pd.read_csv(’yellow_tripdata_2017 -01. csv’, usecols=cols)

dfF = pd.read_csv(’yellow_tripdata_2017 -02. csv’, usecols=cols)

dfM = pd.read_csv(’yellow_tripdata_2017 -03. csv’, usecols=cols)

dfA = pd.read_csv(’yellow_tripdata_2017 -04. csv’, usecols=cols)

dfMy = pd.read_csv(’yellow_tripdata_2017 -05. csv’, usecols=cols)

df = dfJ.append(dfF).append(dfM).append(dfA).append(dfMy)

#236 manhattan upper east side

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU.to_csv("JFKraw.csv", columns=cols)

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

plt.scatter(startTime , dur)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
from JFK Airport to Manhattan’s
UpperEastSide.

Page 33 :

In our trip database, collection and deposit points are identified by an ID. A CSV file also online specifies that JFK
has for ID 132, while Upper Manhattan is 236.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Travel time between JFK and Upper East Side depending
on time of departure.

C. BUCHE - buche@enib.fr IML 34 / 79

Travel time between JFK and Upper East Side depending
on time of departure.

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Travel time between JFK and Upper East Side
depending on time of departure.

Page 34 :

Demo : JFK.py

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Cleaning

. two peaks are around 7am and 4pm

. the peak of 7am is not always a real one

. It’s a safe bet that these easy-going points are just weekend
days (and probably holidays)

C. BUCHE - buche@enib.fr IML 35 / 79

Cleaning

. two peaks are around 7am and 4pm

. the peak of 7am is not always a real one

. It’s a safe bet that these easy-going points are just weekend
days (and probably holidays)

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Cleaning

Page 35 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

dfJ = pd.read_csv(’yellow_tripdata_2017 -01. csv’, usecols=cols)

dfF = pd.read_csv(’yellow_tripdata_2017 -02. csv’, usecols=cols)

dfM = pd.read_csv(’yellow_tripdata_2017 -03. csv’, usecols=cols)

dfA = pd.read_csv(’yellow_tripdata_2017 -04. csv’, usecols=cols)

dfMy = pd.read_csv(’yellow_tripdata_2017 -05. csv’, usecols=cols)

df = dfJ.append(dfF).append(dfM).append(dfA).append(dfMy)

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU[’weekday ’]= JFK_MU[’tpep_pickup_datetime ’].apply(lambda x :parser.parse(x

).weekday ())

JFK_MU = JFK_MU[JFK_MU[’weekday ’]<5]

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

plt.scatter(startTime , dur)

plt.show()

C. BUCHE - buche@enib.fr IML 36 / 79

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

dfJ = pd.read_csv(’yellow_tripdata_2017 -01. csv’, usecols=cols)

dfF = pd.read_csv(’yellow_tripdata_2017 -02. csv’, usecols=cols)

dfM = pd.read_csv(’yellow_tripdata_2017 -03. csv’, usecols=cols)

dfA = pd.read_csv(’yellow_tripdata_2017 -04. csv’, usecols=cols)

dfMy = pd.read_csv(’yellow_tripdata_2017 -05. csv’, usecols=cols)

df = dfJ.append(dfF).append(dfM).append(dfA).append(dfMy)

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU[’weekday ’]= JFK_MU[’tpep_pickup_datetime ’].apply(lambda x :parser.parse(x

).weekday ())

JFK_MU = JFK_MU[JFK_MU[’weekday ’]<5]

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

plt.scatter(startTime , dur)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem

Page 36 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

All aberrations (7am) are almost disappeared.

C. BUCHE - buche@enib.fr IML 37 / 79

All aberrations (7am) are almost disappeared.

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
All aberrations (7am) are almost disappeared.

Page 37 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Cerce

. example of data that clearly does not fit into a linear model

. use a linear regression: splines

� interval [xmin, xmax] on which the spline is defined is divided
into n control points xi .

� At each of these points of control, we add a new line, which
alters the pace of the curve defined at this point.

� we build a series of functions, generally noted I iplus(x) which
are zero until xi and the value is x − xi from xi .

C. BUCHE - buche@enib.fr IML 38 / 79

Cerce

. example of data that clearly does not fit into a linear model

. use a linear regression: splines

� interval [xmin, xmax] on which the spline is defined is divided
into n control points xi .

� At each of these points of control, we add a new line, which
alters the pace of the curve defined at this point.

� we build a series of functions, generally noted I iplus(x) which
are zero until xi and the value is x − xi from xi .

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Cerce

Page 38 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

This allows you to start a new line at each control point. Once this
function has been defined, the calculation of the ordinate of this
spline for a given abscissa is straightforward:

C. BUCHE - buche@enib.fr IML 39 / 79

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

This allows you to start a new line at each control point. Once this
function has been defined, the calculation of the ordinate of this
spline for a given abscissa is straightforward:

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem

Page 39 :

y is therefore expressed in linear form. We will therefore be able to reuse our linear regression by simply extending it
to a dimension greater than 1. Concretely, the matrix X , which up to now consisted of two columns, will henceforth
contain n + 1. The last column, corresponding b is always filled with 1. The first n, for their part, contain the result
of the application of Iiplus(x) on the abscissa of the current sample.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

np.dot(x, A)

C. BUCHE - buche@enib.fr IML 40 / 79

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

np.dot(x, A)

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem

Page 40 :

xMin and xMax specify the bounds of the interval including all values of x, while step specifies the distance between
each node of our spline. On an interval of [0, 1] and step = 0.1 the spline is based on 10 nodes.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Case study

import numpy as np

import math

import random

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([math.log(x[0]. item (0))for x in X]).transpose ()

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([splinify (0.0, 1.0, 0.01, x[0]. item (0))for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*Y

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(np.asarray(X[:,0]), np.asarray(Y))

plt.scatter(np.asarray(X[:,0]), np.asarray(Yreg))

plt.show()

C. BUCHE - buche@enib.fr IML 41 / 79

Case study

import numpy as np

import math

import random

from numpy.linalg import inv

import matplotlib.pyplot as plt

nbSamples =1000

X = np.matrix ([[random.random (), 1]for x inrange(nbSamples)])

Y = np.matrix ([math.log(x[0]. item (0))for x in X]).transpose ()

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([splinify (0.0, 1.0, 0.01, x[0]. item (0))for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*Y

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(np.asarray(X[:,0]), np.asarray(Y))

plt.scatter(np.asarray(X[:,0]), np.asarray(Yreg))

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Case study

Page 41 :

We start with the construction of our dataset by filling in X with values drawn at random in [0, 1]. From there, we
populate Y by applying the logarithm function.
Then, in the same way as in the case of the right, we fill Xm with the terms of our polynomial of degree 1, using
the splinify() function. A is then calculated with the same formula, and we evaluate in the process our spline for all
the abscissae of our sample using a simple scalar product. The result is stored in Yreg.
The last three lines generate the figure, where we see that our modeling by a linear spline of our test set works very
well. It is possible to degrade the quality of this modeling by playing on the step parameter of the splinify() function.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

C. BUCHE - buche@enib.fr IML 42 / 79

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem

Page 42 :

The logarithm function on the interval [0, 1], in blue, and its modeling by the spline, in orange. The two overlap
almost perfectly.
Demo : spline.py

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

JFK → Upper Manhattan

import numpy as np

import math

import random

from numpy.linalg import inv

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

df = pd.read_csv(’JFKraw.csv’, usecols=cols)

#236 manhattan upper east side

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU[’weekday ’]= JFK_MU[’tpep_pickup_datetime ’].apply(lambda x :parser.parse(x

).weekday ())

JFK_MU = JFK_MU[JFK_MU[’weekday ’]<5]

C. BUCHE - buche@enib.fr IML 43 / 79

JFK → Upper Manhattan

import numpy as np

import math

import random

from numpy.linalg import inv

import pandas as pd

from dateutil importparser

import matplotlib.pyplot as plt

cols =[’PULocationID ’,’DOLocationID ’,’tpep_pickup_datetime ’,’

tpep_dropoff_datetime ’,’trip_distance ’]

df = pd.read_csv(’JFKraw.csv’, usecols=cols)

#236 manhattan upper east side

JFK_MU = df[(df[’PULocationID ’]==132) &(df[’DOLocationID ’]==236)]

JFK_MU[’weekday ’]= JFK_MU[’tpep_pickup_datetime ’].apply(lambda x :parser.parse(x

).weekday ())

JFK_MU = JFK_MU[JFK_MU[’weekday ’]<5]

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
JFK → Upper Manhattan

Page 43 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

JFK → Upper Manhattan

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

X = startTime

Y = dur

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([[Iplus (0.5, x), Iplus(0, x), 1]for x in X])

Find a and b

Xm = np.matrix ([splinify(np.min(X), np.max(X), 0.1, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(X, np.asarray(Y))

plt.scatter(X, np.asarray(Yreg))

plt.show()

C. BUCHE - buche@enib.fr IML 44 / 79

JFK → Upper Manhattan

pu = [parser.parse(dt)for dt in JFK_MU[’tpep_pickup_datetime ’]. values]

do = [parser.parse(dt)for dt in JFK_MU[’tpep_dropoff_datetime ’]. values]

dur = [(b -a).total_seconds ()/ 3600.0 for a, b inzip(pu, do)]

startTime = [dt.hour+ dt.minute/ 60.0 for dt in pu]

X = startTime

Y = dur

def Iplus(xi, x):

if x>= xi: return x - xi

else: return 0.0

def splinify(xMin , xMax , step , x):

a = [Iplus(xMin + i *step , x)for i inrange(int((xMax - xMin) / step))]

a.reverse ()

return a +[1]

Xm = np.matrix ([[Iplus (0.5, x), Iplus(0, x), 1]for x in X])

Find a and b

Xm = np.matrix ([splinify(np.min(X), np.max(X), 0.1, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.scatter(X, np.asarray(Y))

plt.scatter(X, np.asarray(Yreg))

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
JFK → Upper Manhattan

Page 44 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

JFK → Upper Manhattan

overfitting: essential distinction between learning set and validation
set !!

C. BUCHE - buche@enib.fr IML 45 / 79

JFK → Upper Manhattan

overfitting: essential distinction between learning set and validation
set !!

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
JFK → Upper Manhattan

Page 45 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Compromise bias / variance

. step = 0.1 (arbitrary)

. abscissa extending to [0.25]

. our spline is found with no less than 250 nodes.

. large number of degrees of freedom: allows to deform a lot.

. principle of understood bias / variance. That is to say that the
data scientist, when he chooses a model for these data, must
arbitrate between a too simple model, which would lead to a
significant bias, and a model that is too complex, too flexible,
that generates too much variance . That’s what we just did.

C. BUCHE - buche@enib.fr IML 46 / 79

Compromise bias / variance

. step = 0.1 (arbitrary)

. abscissa extending to [0.25]

. our spline is found with no less than 250 nodes.

. large number of degrees of freedom: allows to deform a lot.

. principle of understood bias / variance. That is to say that the
data scientist, when he chooses a model for these data, must
arbitrate between a too simple model, which would lead to a
significant bias, and a model that is too complex, too flexible,
that generates too much variance . That’s what we just did.2

0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Compromise bias / variance

Page 46 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Compromise bias / variance

step = 10 (spline = 3 nodes)

C. BUCHE - buche@enib.fr IML 47 / 79

Compromise bias / variance

step = 10 (spline = 3 nodes)

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Compromise bias / variance

Page 47 :

Demo : splineJFK.py splineJFKVar.py

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Compromise bias / variance

step = 2

C. BUCHE - buche@enib.fr IML 48 / 79

Compromise bias / variance

step = 2

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Compromise bias / variance

Page 48 :

To choose the value of our step parameter, we proceeded by iteration, evaluating the quality of the obtained result.
This method has the merit of making use of the expertise of the data scientist, but in order to obtain the best result,
it is necessary to rely on more scientific criteria.
For this, it is necessary as detailed in the previous box, to have a set of learning and validation. Given these sets, it
is then possible to calculate several metrics, to quantify how well the solution models the reality.
These metrics are often measures of errors between the actual values and their prediction using the model. We can
cite for example the Mean Absolute Error (MAE) or the Root Mean Square Error (RMSE).

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

Aberrant points

modeling error around 4:20. This error is due to the presence of
outliers, which are either measurement errors or extraordinary cases
of plugs, failures, etc.

Find a and b

Xm = np.matrix ([splinify(np.min(X), np.max(X), 1.0, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

Yfiltered = [Y[i]for i in range(len(Y)) if ((math.fabs((Y[i]-Yreg[i]) / Y[i]) <

0.9) and (Y[i] > 0.2) and(Y[i] <2.5))]

Xfiltered = [X[i]for i in range(len(Y)) if ((math.fabs((Y[i]-Yreg[i]) / Y[i]) <

0.9) and (Y[i] > 0.2) and(Y[i] <2.5))]

Xm = np.matrix ([splinify(np.min(Xfiltered), np.max(X), 1.0, x)for x in Xfiltered

])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Yfiltered).transpose ()

Yfilteredreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.xlabel(’Heure Depart (h)’)

plt.ylabel(’Duree Trajet (h)’)

plt.scatter(X, np.asarray(Y))

plt.scatter(Xfiltered , np.asarray(Yfilteredreg))

plt.show()

C. BUCHE - buche@enib.fr IML 49 / 79

Aberrant points

modeling error around 4:20. This error is due to the presence of
outliers, which are either measurement errors or extraordinary cases
of plugs, failures, etc.

Find a and b

Xm = np.matrix ([splinify(np.min(X), np.max(X), 1.0, x)for x in X])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Y).transpose ()

Yreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

Yfiltered = [Y[i]for i in range(len(Y)) if ((math.fabs((Y[i]-Yreg[i]) / Y[i]) <

0.9) and (Y[i] > 0.2) and(Y[i] <2.5))]

Xfiltered = [X[i]for i in range(len(Y)) if ((math.fabs((Y[i]-Yreg[i]) / Y[i]) <

0.9) and (Y[i] > 0.2) and(Y[i] <2.5))]

Xm = np.matrix ([splinify(np.min(Xfiltered), np.max(X), 1.0, x)for x in Xfiltered

])

A = inv(Xm.transpose ()*Xm)*Xm.transpose ()*np.matrix(Yfiltered).transpose ()

Yfilteredreg = np.matrix ([[np.dot(x, A).item (0)]for x in Xm])

plt.xlabel(’Heure Depart (h)’)

plt.ylabel(’Duree Trajet (h)’)

plt.scatter(X, np.asarray(Y))

plt.scatter(Xfiltered , np.asarray(Yfilteredreg))

plt.show()

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem
Aberrant points

Page 49 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

C. BUCHE - buche@enib.fr IML 50 / 79

2
0
1
9
-0
8
-2
7

IML
Graphic tool for DataScientist

A non-linear problem

Page 50 :

The code was developed under Ubuntu, and is available on GitHub: https://github.com/kayhman/SmartLinearReg

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis

C. BUCHE - buche@enib.fr IML 51 / 79

1 Dataset rules

2 Hyper Parameter tuning

3 Data preparation

4 Graphic tool for DataScientist
Introduction
Tell me everything, and I’ll tell you who you are
A non-linear problem

5 Reduction of dimension
Iris
The theory behind principal component analysis2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

Page 51 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Introduction

. number of variables in a dataset becomes too large.

. precise analysis in each of the dimensions, it takes a set of
measures quite gigantic

. difficult for a human to understand the relationships between
so many variables.

C. BUCHE - buche@enib.fr IML 52 / 79

Introduction

. number of variables in a dataset becomes too large.

. precise analysis in each of the dimensions, it takes a set of
measures quite gigantic

. difficult for a human to understand the relationships between
so many variables.

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Introduction

Page 52 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Example

3 different iris species, brings together four different measures:

. the length of the sepals;

. the width of the sepals;

. the length of the petals;

. the width of the petals

C. BUCHE - buche@enib.fr IML 53 / 79

Example

3 different iris species, brings together four different measures:

. the length of the sepals;

. the width of the sepals;

. the length of the petals;

. the width of the petals

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
Example

Page 53 :

Dimension 3

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Comparisons two by two of the variables of the set

import matplotlib.pyplot as plt

from sklearn import datasets

iris = datasets.load_iris ()

labels =[’sepal length ’,’sepal width ’,’petal length ’,’petal width’]

for xx inrange (4):

for yy inrange (4):

if yy > xx:

print xx , yy

plt.xlabel(labels[xx])

plt.ylabel(labels[yy])

plt.scatter(iris.data[y==0][: , xx], iris.data[y==0][: ,yy])

plt.scatter(iris.data[y==1][: , xx], iris.data[y==1][: ,yy])

plt.scatter(iris.data[y==2][: , xx], iris.data[y==2][: ,yy])

plt.show()

C. BUCHE - buche@enib.fr IML 54 / 79

Comparisons two by two of the variables of the set

import matplotlib.pyplot as plt

from sklearn import datasets

iris = datasets.load_iris ()

labels =[’sepal length ’,’sepal width ’,’petal length ’,’petal width’]

for xx inrange (4):

for yy inrange (4):

if yy > xx:

print xx , yy

plt.xlabel(labels[xx])

plt.ylabel(labels[yy])

plt.scatter(iris.data[y==0][: , xx], iris.data[y==0][: ,yy])

plt.scatter(iris.data[y==1][: , xx], iris.data[y==1][: ,yy])

plt.scatter(iris.data[y==2][: , xx], iris.data[y==2][: ,yy])

plt.show()

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
Comparisons two by two of the variables of the
set

Page 54 :

The dimension of this set, n = 4, being reduced, the number of graphs to be plotted does not exceed n (n-1) / 2 =
6. This remains analysable by a human, and it is also easy to generate automatically these analyzes

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Comparisons two by two of the variables of the set

C. BUCHE - buche@enib.fr IML 55 / 79

Comparisons two by two of the variables of the set

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
Comparisons two by two of the variables of the
set

Page 55 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

PCA

. Principal component analysis: reduce the size of the studied
ensemble by identifying the dimensions that carry the most
information

. if one of the predictors has the same value for all samples,
then it does not provide any information

. identify the axes that carry the most information, in an orderly
manner

. This is almost always a linear combination of predictors.

C. BUCHE - buche@enib.fr IML 56 / 79

PCA

. Principal component analysis: reduce the size of the studied
ensemble by identifying the dimensions that carry the most
information

. if one of the predictors has the same value for all samples,
then it does not provide any information

. identify the axes that carry the most information, in an orderly
manner

. This is almost always a linear combination of predictors.2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
PCA

Page 56 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

a simple 2D case

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

plt.scatter(X0, X1)

plt.show()

C. BUCHE - buche@enib.fr IML 57 / 79

a simple 2D case

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

plt.scatter(X0, X1)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
a simple 2D case

Page 57 :

In this example, we collect the width of an object and its perimeter. Now, it turns out that all these objects are
disks. Given their width d, which is none other than their diameter, it is easy to calculate their perimeter p = d ∗π.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

The relationship between our
two predictors is clearly linear. By identifying the relationship
between them, it is possible to reduce our set to one dimension.

C. BUCHE - buche@enib.fr IML 58 / 79

The relationship between our
two predictors is clearly linear. By identifying the relationship
between them, it is possible to reduce our set to one dimension.2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 58 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

X = np.matrix ((X0, X1)).transpose ()

pca = PCA(n_components =2)

pca.fit(X)

print(pca.components_ [0])

print(pca.explained_variance_)

C. BUCHE - buche@enib.fr IML 59 / 79

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

X = np.matrix ((X0, X1)).transpose ()

pca = PCA(n_components =2)

pca.fit(X)

print(pca.components_ [0])

print(pca.explained_variance_)

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 59 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

[[0.30331383 0.95289072]

[-0.95289072 0.30331383]]

[3.04402295e+01 2.11846137e-15]

>>> pca.components_ [0][1]/ pca.components_ [0][0]

3.1416000000000022

>>> np.dot(pca.components_ [0], pca.components_ [1])

0.0

>>> np.linalg.norm(pca.components_ [0])

1.0

>>> np.linalg.norm(pca.components_ [1])

1.0

C. BUCHE - buche@enib.fr IML 60 / 79

[[0.30331383 0.95289072]

[-0.95289072 0.30331383]]

[3.04402295e+01 2.11846137e-15]

>>> pca.components_ [0][1]/ pca.components_ [0][0]

3.1416000000000022

>>> np.dot(pca.components_ [0], pca.components_ [1])

0.0

>>> np.linalg.norm(pca.components_ [0])

1.0

>>> np.linalg.norm(pca.components_ [1])

1.0

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 60 :

Note that if we do the ratio between the two coordinates of the first vector, we fall well on π.
Very important point too, if we have fun making the scalar product between these two vectors, we discover that they
are orthogonal

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

The first axis, the one with the greatest eigenvalue, is enough to
capture our whole

C. BUCHE - buche@enib.fr IML 61 / 79

The first axis, the one with the greatest eigenvalue, is enough to
capture our whole2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 61 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

the matrix presented above can be considered, in the case 2D at
least, as a rotation matrix.
import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

X = np.matrix ((X0, X1)).transpose ()

pca = PCA(n_components =2)

X_r = pca.fit(X).transform(X)

print(pca.components_)

print(pca.singular_values_)

plt.scatter(X_r[:,0], X_r [: ,1])

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.show()

C. BUCHE - buche@enib.fr IML 62 / 79

the matrix presented above can be considered, in the case 2D at
least, as a rotation matrix.
import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

from random importrandom

import numpy as np

nbSamples =1000

X0 = [random ()for x inrange(nbSamples)]

X1 = [3.1416*x for x in X0]

X = np.matrix ((X0, X1)).transpose ()

pca = PCA(n_components =2)

X_r = pca.fit(X).transform(X)

print(pca.components_)

print(pca.singular_values_)

plt.scatter(X_r[:,0], X_r [: ,1])

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.show()2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 62 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

No doubt, the second dimension of our 2D case definitely does not
help.

C. BUCHE - buche@enib.fr IML 63 / 79

No doubt, the second dimension of our 2D case definitely does not
help.2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 63 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

PCA and iris

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris ()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components =4)

X_r = pca.fit(X).transform(X)

colors =[’navy’,’turquoise ’,’darkorange ’]

lw =2

for color , i, target_name inzip(colors ,[0,1,2], target_names):

plt.scatter(X_r[y == i,0], X_r[y == i,1], color=color , alpha=.8, lw=lw ,

label=target_name)

plt.legend(loc=’best’, shadow=False , scatterpoints =1)

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.title(’PCA of IRIS dataset ’)

plt.show()

C. BUCHE - buche@enib.fr IML 64 / 79

PCA and iris

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris ()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components =4)

X_r = pca.fit(X).transform(X)

colors =[’navy’,’turquoise ’,’darkorange ’]

lw =2

for color , i, target_name inzip(colors ,[0,1,2], target_names):

plt.scatter(X_r[y == i,0], X_r[y == i,1], color=color , alpha=.8, lw=lw ,

label=target_name)

plt.legend(loc=’best’, shadow=False , scatterpoints =1)

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.title(’PCA of IRIS dataset ’)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
PCA and iris

Page 64 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Principal component analysis automatically provides a
representation that separates the different types of iris.

C. BUCHE - buche@enib.fr IML 65 / 79

Principal component analysis automatically provides a
representation that separates the different types of iris.2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris

Page 65 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

PCA et iris

>>> print(pca.components_)

[[0.36158968 -0.082268890.856572110.35884393]

[0.656539880.72971237 -0.1757674 -0.07470647]

[-0.580997280.596418090.072524080.54906091]

[0.31725455 -0.32409435 -0.479718990.75112056]]

>>> print(pca.exaplained_variances_)

[25.089863986.007852543.420535381.87850234]

a lot of the information is contained in the first dimension

C. BUCHE - buche@enib.fr IML 66 / 79

PCA et iris

>>> print(pca.components_)

[[0.36158968 -0.082268890.856572110.35884393]

[0.656539880.72971237 -0.1757674 -0.07470647]

[-0.580997280.596418090.072524080.54906091]

[0.31725455 -0.32409435 -0.479718990.75112056]]

>>> print(pca.exaplained_variances_)

[25.089863986.007852543.420535381.87850234]

a lot of the information is contained in the first dimension

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
PCA et iris

Page 66 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

BIPLOT

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris ()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components =4)

X_r = pca.fit(X).transform(X)

colors =[’navy’,’turquoise ’,’darkorange ’]

lw =2

for color , i, target_name inzip(colors ,[0,1,2], target_names):

plt.scatter(X_r[y == i,0], X_r[y == i,1], color=color , alpha=.8, lw=lw ,

label=target_name)

plt.legend(loc=’best’, shadow=False , scatterpoints =1)

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.title(’PCA of IRIS dataset ’)

props =["sepal length","sepal width","petal length","petal width"]

for i inrange (4):

x = pca.components_ [0][i]

y = pca.components_ [1][i]

plt.arrow(0,0, x, y, head_width =0.05, head_length =0.1, fc=’k’, ec=’k’)

plt.text(x, y, props[i])

plt.show()

C. BUCHE - buche@enib.fr IML 67 / 79

BIPLOT

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

iris = datasets.load_iris ()

X = iris.data

y = iris.target

target_names = iris.target_names

pca = PCA(n_components =4)

X_r = pca.fit(X).transform(X)

colors =[’navy’,’turquoise ’,’darkorange ’]

lw =2

for color , i, target_name inzip(colors ,[0,1,2], target_names):

plt.scatter(X_r[y == i,0], X_r[y == i,1], color=color , alpha=.8, lw=lw ,

label=target_name)

plt.legend(loc=’best’, shadow=False , scatterpoints =1)

plt.xlabel("Composante 1")

plt.ylabel("Composante 2")

plt.title(’PCA of IRIS dataset ’)

props =["sepal length","sepal width","petal length","petal width"]

for i inrange (4):

x = pca.components_ [0][i]

y = pca.components_ [1][i]

plt.arrow(0,0, x, y, head_width =0.05 , head_length =0.1, fc=’k’, ec=’k’)

plt.text(x, y, props[i])

plt.show()

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
BIPLOT

Page 67 :

biplot: display on a 2D graph the maximum of information on all dimensions of the problem. This tool allows to
display several dimensions in only two dimensions.
For this, we start from the projection of our data in the 2D plane described by the first two main components of our
analysis. Then we display in the form of 2D vectors the initial dimensions of the problem considered.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

BIPLOT

C. BUCHE - buche@enib.fr IML 68 / 79

BIPLOT

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
BIPLOT

Page 68 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

BIPLOT

moyenne de la longueur du petale - setosa

np.std(iris.data[y==0][: ,2])

-> 0.17176728442867112

moyenne de la longueur du petale - versicolor

np.std(iris.data[y==1][: ,2])

-> 0.4651881339845203

moyenne de la longueur du petale - virginica

np.std(iris.data[y==2][: ,2])

-> 0.54634787452684397

The length of the petals of the setosa is clearly smaller than for
versicolor and virginica.

C. BUCHE - buche@enib.fr IML 69 / 79

BIPLOT

moyenne de la longueur du petale - setosa

np.std(iris.data[y==0][: ,2])

-> 0.17176728442867112

moyenne de la longueur du petale - versicolor

np.std(iris.data[y==1][: ,2])

-> 0.4651881339845203

moyenne de la longueur du petale - virginica

np.std(iris.data[y==2][: ,2])

-> 0.54634787452684397

The length of the petals of the setosa is clearly smaller than for
versicolor and virginica.2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
BIPLOT

Page 69 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

BIPLOT

moyenne de la Largeur du sepale - setosa

np.std(iris.data[y==0][: ,1])

-> 0.37719490982779713

moyenne de la Largeur du sepale - versicolor

np.std(iris.data[y==1][: ,1])

-> 0.31064449134018135

moyenne de la Largeur du sepale - virginica

np.std(iris.data[y==2][: ,1])

-> 0.31925538366643091

In this case, the values are very close: it is not a good parameter
to distinguish the different species.

C. BUCHE - buche@enib.fr IML 70 / 79

BIPLOT

moyenne de la Largeur du sepale - setosa

np.std(iris.data[y==0][: ,1])

-> 0.37719490982779713

moyenne de la Largeur du sepale - versicolor

np.std(iris.data[y==1][: ,1])

-> 0.31064449134018135

moyenne de la Largeur du sepale - virginica

np.std(iris.data[y==2][: ,1])

-> 0.31925538366643091

In this case, the values are very close: it is not a good parameter
to distinguish the different species.

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

Iris
BIPLOT

Page 70 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Normalization

. Principal component analysis provides a series of analysis axes
that capture the variability of the data studied, in descending
order.

. The data thus spread widely along the first axis, while they
are fairly condensed around the last one.

. If the data are not normalized, that is, if they have not been
reworked in such a way that their averages are zero, and their
standard deviations are 1.0, then the analysis may be skewed
by differences in units used.

C. BUCHE - buche@enib.fr IML 71 / 79

Normalization

. Principal component analysis provides a series of analysis axes
that capture the variability of the data studied, in descending
order.

. The data thus spread widely along the first axis, while they
are fairly condensed around the last one.

. If the data are not normalized, that is, if they have not been
reworked in such a way that their averages are zero, and their
standard deviations are 1.0, then the analysis may be skewed
by differences in units used.2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
Normalization

Page 71 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Raw data

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

plt.scatter(pe[’price ’], pe[’engine ’])

plt.xlabel(’price ’)

plt.ylabel(’engine ’)

plt.show()

C. BUCHE - buche@enib.fr IML 72 / 79

Raw data

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

plt.scatter(pe[’price ’], pe[’engine ’])

plt.xlabel(’price ’)

plt.ylabel(’engine ’)

plt.show()

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
Raw data

Page 72 :

To illustrate the importance of standardization, we will focus on two variables: price and engine capacity. The price
is given in dollars, while the cubic capacity is in liters. Without normalization, we compare data that have very
different scales, which bias the result.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

BIPLOT

C. BUCHE - buche@enib.fr IML 73 / 79

BIPLOT

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
BIPLOT

Page 73 :

These data, raw, give the impression that cars are distinguished mainly by their price, since the latter varies from
10,000 to 90,000, while the cubic capacity is confined to the interval [3, 8].

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Normalized data

Let’s normalize our data: a zero mean and a standard deviation of
1

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

pe_scaled = preprocessing.scale(pe)

plot.scatter(pe_scaled [:,0], pe_scaled [:,1])

plt.xlabel(’price (norm)’)

plt.ylabel(’engine (norm)’)

plt.show()

C. BUCHE - buche@enib.fr IML 74 / 79

Normalized data

Let’s normalize our data: a zero mean and a standard deviation of
1

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

pe_scaled = preprocessing.scale(pe)

plot.scatter(pe_scaled [:,0], pe_scaled [:,1])

plt.xlabel(’price (norm)’)

plt.ylabel(’engine (norm)’)

plt.show()2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
Normalized data

Page 74 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Normalized data

Price and displacement of cars, once standardized. These two axes
now seem to contain information.

C. BUCHE - buche@enib.fr IML 75 / 79

Normalized data

Price and displacement of cars, once standardized. These two axes
now seem to contain information.2

0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
Normalized data

Page 75 :

In essence, standardization makes the data dimensionless, allowing them to be compared without risk.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

PCA

import numpy as np

from sklearn.decomposition import PCA

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

X_scaled = preprocessing.scale(df[cols]. replace(’*’,float(’nan’)).dropna ().

as_matrix ())

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

pe_scaled = preprocessing.scale(pe)

pca = PCA(n_components =2)

raw data

pca.fit(pe)

print(pca.explained_variance_)

normalized data

pca.fit(pe_scaled)

print(pca.explained_variance_)

C. BUCHE - buche@enib.fr IML 76 / 79

PCA

import numpy as np

from sklearn.decomposition import PCA

import pandas as pd

from sklearn import preprocessing

import matplotlib.pyplot as plt

cols =[’price’,’invoice price’,’dealer cost’,’engine ’,’cylinders ’,’horsepower ’,’

weight ’,’wheel ’,’length ’,’width’,’cm per gallons ’,’hm per gallons ’]

df = pd.read_csv(’04cars.dat.txt’, usecols=cols)

X_scaled = preprocessing.scale(df[cols]. replace(’*’,float(’nan’)).dropna ().

as_matrix ())

pe = df[df[’price’] >1000][df[’engine ’] <10][[’price’,’engine ’]]

pe_scaled = preprocessing.scale(pe)

pca = PCA(n_components =2)

raw data

pca.fit(pe)

print(pca.explained_variance_)

normalized data

pca.fit(pe_scaled)

print(pca.explained_variance_)

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
PCA

Page 76 :

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

PCA

raw data

[2.32179369e+08 1.08822536e+00]

normalized data

[1.69570742 0.31072345]

C. BUCHE - buche@enib.fr IML 77 / 79

PCA

raw data

[2.32179369e+08 1.08822536e+00]

normalized data

[1.69570742 0.31072345]

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
PCA

Page 77 :

The principal component analysis therefore makes the same observations as we do. In the first case, that of raw
data, it is fooled by the difference in unity between price and engine capacity, and unduly believes that most of the
information is carried by a single axis.
In the second case, the analysis is more measured because the variance of the data is not clearly driven by a single
axis.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Correlation matrix

. in Python: C = pe scaled.transpose()*pe scaled

. This matrix contains valuable information: each element Cij
quantifies the relationship between the variables i and j . If Cij
is positive, then when i grows, then j as well. If, on the other
hand, it is negative, then j decreases while i increases.

. In the case where Cij is zero, and that’s where it gets
interesting, then the variables i and j are not correlated. They
therefore vary independently of each other.

. The particular case where the matrix is diagnonal is therefore
particularly sympathetic, because in this case, the variables
are all independent of each other.

C. BUCHE - buche@enib.fr IML 78 / 79

Correlation matrix

. in Python: C = pe scaled.transpose()*pe scaled

. This matrix contains valuable information: each element Cij
quantifies the relationship between the variables i and j . If Cij
is positive, then when i grows, then j as well. If, on the other
hand, it is negative, then j decreases while i increases.

. In the case where Cij is zero, and that’s where it gets
interesting, then the variables i and j are not correlated. They
therefore vary independently of each other.

. The particular case where the matrix is diagnonal is therefore
particularly sympathetic, because in this case, the variables
are all independent of each other.

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis
Correlation matrix

Page 78 :

It is precisely in this particular case that the analysis in principal components is reduced. Indeed, the correlation
matrix C is symmetric, square, and contains real values. It is therefore possible to diagonalize it, that is to say to
find a change of reference making the directions orthogonal.
This is precisely what principal component analysis does, by calculating the eigenvectors and the eigenvalues of C.
The eigenvectors are then the new axes of analysis, while the eigenvalues make it possible to classify these axes by
variance. decreasing.
Note that for reasons of performance, we do not always proceed directly to the diagonalization of C, but rather to
the decomposition of singular values.

Dataset rules
Hyper Parameter tuning

Data preparation
Graphic tool for DataScientist

Reduction of dimension

Iris
The theory behind principal component analysis

Data

Cédric Buche

ENIB

August 27, 2019

C. BUCHE - buche@enib.fr IML 79 / 79

Data

Cédric Buche

ENIB

August 27, 2019

2
0
1
9
-0
8
-2
7

IML
Reduction of dimension

The theory behind principal component analysis

Page 79 :

	Dataset rules
	Hyper Parameter tuning
	Data preparation
	Graphic tool for DataScientist
	Reduction of dimension

