IntroductionArchitecture designROS BasicsProposalConclusionReferences00

Design Of A Modular Architecture Using ROS : The Pepper Case RoboBreizh Team

A. Dizet, C. Le Bono, A. Legeleux, M. Neau, C. Buche

Lab-STICC, ENIB

RoboBreizh team

Teams

- 1 Full professor
- 2 PhD students
- 2 undergraduates students

Competition

- RoboCup@Home Education Online Challenge (@HomeEDU): a good start before the RoboCup@Home competition
- Award: Best Performance Award in Open Platform

RoboBreizh team

Figure 1: Our team with Pepper and Nao robots

Table of Contents

- 2 ROS Basics
- 3 Proposal
 - The Manager
 - Perception Module
 - Navigation Module
 - Movement Module
 - Interaction Module
 - @HomeEDU Final

4 Conclusion

5 References

2 ROS Basics

3 Proposal

- The Manager
- Perception Module
- Navigation Module
- Movement Module
- Interaction Module
- Output Content of C

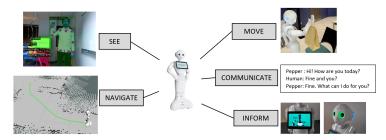
4 Conclusion

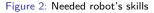
5 References

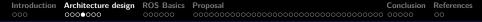
Examples of required capabilities for @HomeEDU

Recognize human

• Understand basics commands


- Recognize objects
- Navigate safely


- Take tiny objects
- Bonus : act natural


From needs to functionalities: a Modular Architecture

Modules are good for:

- Division of work
- Behaviour control

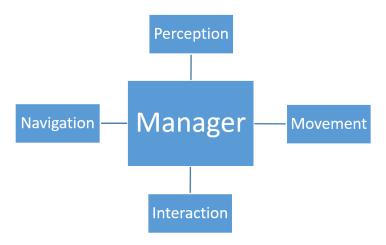


Figure 3: First step: split into modules

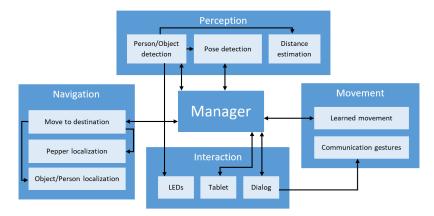


Figure 4: Second step: precise interactions between modules

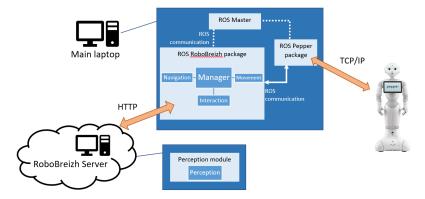


Figure 5: Third step: wrap it up

Developments during lockdown period

Use of a simulator

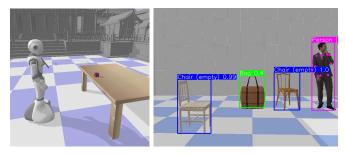


Figure 6: qiBullet simulator [?] used to develop our first algorithms

2 ROS Basics

3 Proposal

- The Manager
- Perception Module
- Navigation Module
- Movement Module
- Interaction Module
- Output Content of C

4 Conclusion

5 References

Introduction Architecture desig	gn ROS Basics	Proposal	Conclusion	References
	00000			

How to control every robot the same way?

ROS: Robot Operating System

- Created by Willow Garage in 2007
- An open-ended collaboration framework
- Over 150 compatible robots
- Over 3,000 available packages
- A large community

Figure 7: Example of compatible robots: (a) TurtleBot, (b) HSR (c) Pepper, (d) Nao

Architecture of ROS communication:

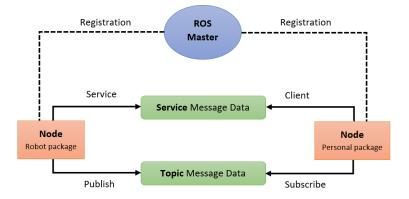
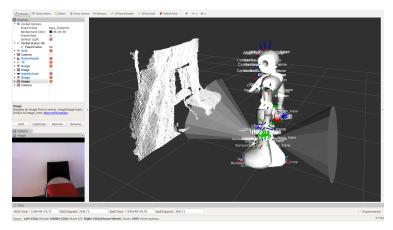



Figure 8: Communication infrastructure

Lots of tools:

Figure 9: RViz: 3D visualization of many sensors

Discussion

- ✓ Open-source
- Standard framework for multiple robots
- ✓ A large community
- Lots of available packages and tutorials (http://wiki.ros.org/ROS/Tutorials)
- May not have all possibilities given by the native API of the robot
- **X** Hard to understand for beginner in computer science
- Asynchronous communication: not adapted to a sequential scenario

- 4 Conclusion
- 5 References

The Manager

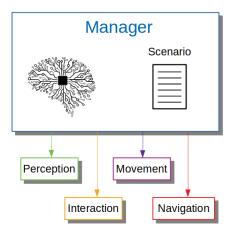


Figure 10: Manager's aim and links

The Manager

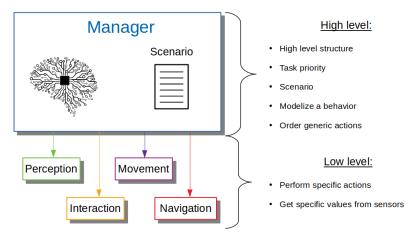


Figure 11: Manager's aim and links

The Manager: Scenario

Our Main Goal

- Create a robot service application for Hotel & Restaurant
- Inspired by RoboCup@Home scenarios Receptionist, Find My Mates and Carry My Luggage

Final behavior (scenario)

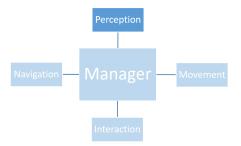
- Pepper is waiting for a new customer
- 2 Pepper moves to the new customer
- O Pepper ask & detect descriptions about the new customer
- Pepper offers the client to sit showing him/her an empty chair
- **5** Pepper move to the receptionist location
- **O** Pepper repeat those descriptions to the receptionist
- Pepper return to it's original position

The Manager: Discussion

Discussion

- Answer to our needs
- Links modules together
- ✔ High level structure
- Simple to make and use
- ✓ Time interval limit for order's execution
- × Not a state machine
- X Actions are performed sequentially
- **×** Scenario paused during order's execution
- X Not fully developed, can be enhance

3 Proposal


• The Manager

Perception Module

- Navigation Module
- Movement Module
- Interaction Module
- @HomeEDU Final

4 Conclusion

5 References

What is computer vision?

- Aim to reproduce the human's sight
- Deduce whether objects are present in a picture
- Deduce where they are located

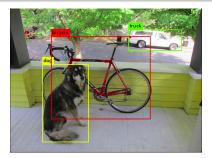


Figure 12: Object detection using YOLOv3 [?]

@HomeEDU requirements

- Detect objects (e.g. bags, chairs...)
- Detect persons
- Bonus: Detect a person's movement

Figure 13: What and how much can be detected?

State-of-the-art

- Object detection: Put objects in boxes, fast
- Instance segmentation: Pixel-perfect localization, slower

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

Figure 14: Detecting objects using Mask R-CNN [?]

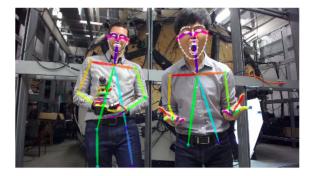


Figure 15: Pose estimation: OpenPose [?]

Constraints

- Require computer intensive operations What can be performed in real-time?
- Pepper's camera has a poor resolution.
 Is the image quality good enough to extract the information we need?

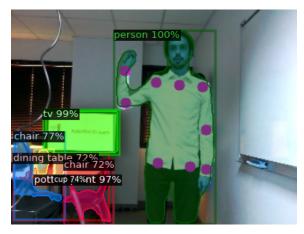


Figure 16: Mask-RCNN and OPenPose video demonstration

Discussion

- High performance in real-time
- Can detect on a pixel level
- Can detect poses
- Requires a computer with a GPU
- Communication between the robot and the computer adds latency

Navigation in Robotics:

- Environment representation (i.e. Mapping)
- Real Time Localization
- Pathfinding

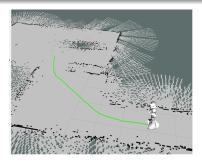


Figure 17: Navigation example

@HomeEDU Requirements

Safely navigate to a given 2D coordinates

Others

- Navigate in known environment
- Easy-to-use and fast implementation
- Deal with known obstacles

State-of-the-art (using ROS)

Simultaneous Localization And Mapping (SLAM)

Figure 18: Visual SLAM [?]

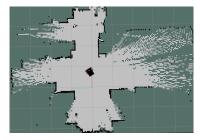


Figure 19: LiDAR-based SLAM [?]

Constraints

- Accuracy of Pepper depth camera
- Pepper number and range of lasers

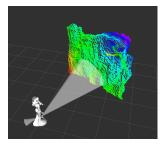


Figure 20: Pepper looking at a flat wall - Rviz Visualization of depth camera

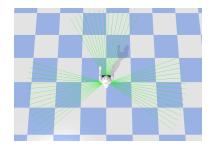


Figure 21: Pepper lasers' range and position

Our approach with Pepper

- LiDAR based SLAM instead of Visual SLAM
- Mapping: Gmapping ROS node [?]
- Navigation: ROS Navigation Stack using AMCL (Adaptive Monte-Carlo Localization) [?] & move_base [?]

Navigation Module

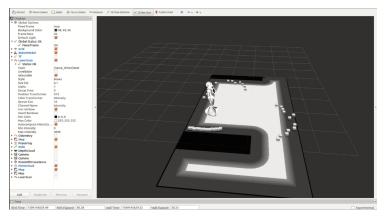
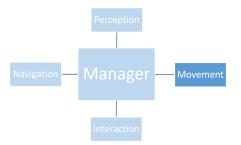


Figure 22: Map and pathfinding visualization through Rviz

Navigation Module

Figure 23: Autonomous Navigation in known environment


Navigation Module

Discussion

- Easy-to-use and fast implementation
- ✓ Work well with short path
- × Inaccuracy of depth camera
- X Non-map objects and moving people led sometimes the planner to failure

- @HomeEDU Final
- 4 Conclusion
- 5 References

What is a robotics movement?

- Allow the robot to move its arms and head
- Create a natural interaction with a human
- Interact with the environment

@HomeEDU requirements

• Specific movements (e.g. take objects, point a seat...)

State-of-the-art

- Used tools: naoqi_pose package (ROS)
- Other tools: NAOqi Motion, Movelt! [?]
- Used learning algorithm: GMM (Gaussian Mixture Model) and GMR (Gaussian Mixture Regression) [?]

Constraints

- Only take light objects with Pepper
- Limited movements due to robot's reachable workspace
- Easy learning a movement

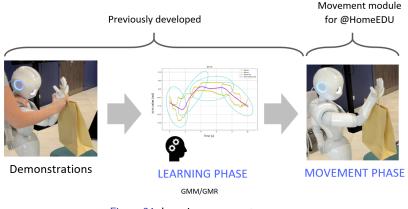


Figure 24: Learning movements process

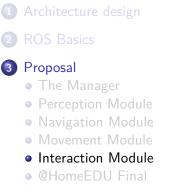
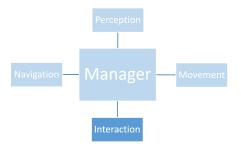

Figure 25: Movement demonstration

Figure 26: Learned movement


Discussion

- Easy to learn a new movement
- Interaction with objects
- × Not adaptive to new object position or with obstacles

4 Conclusion

5 References

What is an interaction?

- A Human-Robot Interaction (HRI): a verbal and non-verbal communication
- Verbal communication : dialog
- Non-verbal communication : tablet, LEDs, gestures

@HomeEDU requirements

- Understand human speech and his intention
- Answer to a human and memorize information
- Natural interaction with non-verbal communication

Verbal communication: Dialog

- Speech-To-Text
- 2 Natural Language Processing
- I Text-To-Speech
 - Used tools: NAOqi
 - Other tools: NLTK (Natural Language Toolkit) [?], Mbot [?]

Figure 27: Pepper dialog

Non-verbal communication

- Display information (tablet)
- Give feedback about its state (tablet, LEDs)
- Show its emotion (tablet, LEDs)
- Communication gestures (arm, head, body)

Figure 28: Pepper's tablet and LEDs

Used communication tools

- Tablet: the hotel welcome
- Eye's LEDs: feedback of the perception module
- Gestures: Autonomous mode from NaoQi

LEDS colour	Type of detection		
Red	Detection of a person		
Yellow	Detection of a person's physical features		
Cyan	Detection of a bag		
Green	Detection of an empty chair		
Pink	Detection of a taken chair		
Purple	Detection of a waving hand		

Table 1: Colour code of the Pepper eyes

Discussion

- Easy to implement if the interaction is predefined
- Improve the natural communication with the robot
- X Complex with human natural language (not predefined)
- **X** Gestures during an interaction are complex to defined

Architecture design

2 ROS Basics

3 Proposal

- The Manager
- Perception Module
- Navigation Module
- Movement Module
- Interaction Module
- @HomeEDU Final

4 Conclusion

5 References

RoboCup@Home Education Online Challenge: Final

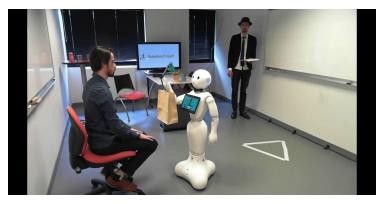


Figure 29: @HomeEDU final of RoboBreizh team

1 Architecture design

2 ROS Basics

3 Proposal

- The Manager
- Perception Module
- Navigation Module
- Movement Module
- Interaction Module
- @HomeEDU Final

4 Conclusion

5 References

Conclusion

Summing up

- Choose the application and define the needs
- Define the module for the architecture and the used tools to create it (e.g. ROS)
- Be flexible
- RoboBreizh team won the Best Performance Award in Open Platform @HomeEDU

Conclusion

Futur work

- Improve the Dialog part
- Be on-board
- Improve Navigation system
- Participate in the RoboCup@Home competition

Partners

Figure 30: Our partners

Design Of A Modular Architecture Using ROS : The Pepper Case RoboBreizh Team

A. Dizet, C. Le Bono, A. Legeleux, M. Neau, C. Buche

Lab-STICC, ENIB

30th September 2020

1 Architecture design

2 ROS Basics

3 Proposal

- The Manager
- Perception Module
- Navigation Module
- Movement Module
- Interaction Module
- @HomeEDU Final

4 Conclusion

Introduction	Architecture design	ROS Basics	Proposal	Conclusion	References
					0•

References I