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1 Context

1.1 Classification of Galaxies

Astronomers have provided a classification of objects from the sky. Messier, in 1774,
publishes a catalog of 110 diffuse objects, which makes it the first referencing of nebulae
and galaxies. In 1936, E. Hubble (who gave his name to the American space telescope)
proposed a classification of galaxies by proposing a diagram of evolution (figure 1). This
diagram evolved during the years (de Vaucouleurs, 1959 and 1964), Kormendy and Ben-
der (1996), and others thereafter, but it still remains the basis of today’s classification
systems.

The classification of galaxies is a complex step that aims to bring together objects by
common features in fundamental categories. It uses decision-making processes that in-
volve an analysis of the morphology, the nature of the objects, but sometimes also a
multidimensional analysis (temporal and wavelength). Sometimes even the classification
depends on the person filing the data.

By remaining synthetic, all galaxies can be classified according to three broad cat-
egories (see figure 1), elliptic (E), Spirals (S) (normal or crossed out) and
Irregular (Irr). It is this (simplistic) approach that we will use for this initiation. We
will then try to automatically process the new images to define how to classify the galaxies
in these 3 classes.
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Figure 1: Hubble sequence (http://astronomy.swin.edu.au/cosmos/H/Hubble+Classification)



1.2 Install

$ pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

$ pip install --user scikit-learn
$ pip install --user keras tensorflow np_utils
$ pip install --user fitsio

1.3 Data

1.3.1 Raw Data

We will work with the astrophysical data of the COSMOS project (Cosmic Evolution
Survey). This survey was defined by a collaboration of 200 scientists led by Peter Capak
to solve the problems of formation and evolution of galaxies.

We will limit ourselves to a part of a few thousand galaxies that have been classified vi-
sually. These data are available on /home/TP/modules/sujets/IML/tp_galaxies/data.

In the folder you should have a data directory containing:
> a text file data-COSMOS-10000-id.txt of 13000 classified objects;
> a image directory containing 3998 images of already classified galaxies;
> a new_image directory containing 1000 images of unclassified galaxies.

The /home/TP/modules/sujets/IML/tp_galaxies/iml _student.py file loads the data.
It also makes it possible to visualize them (figure 2).

1.3.2 Data Transformation

Although the data has already been processed and cleaned up, two transformations are
required.

On the one hand, the implementation of the scikit-learn algorithms is expected to
receive standardized data input, that is, transformed to have a zero mean and a variance
equal to one. Without going into detail, the goal of this transformation is to allow uniform
weight variation when applied to data.

On the other hand, most scikit-learn algorithms only accept input vector data while our
images are matrices. We can simply convert our matrices M x N (our images therefore)
into vectors of size MN. For example, 100 matrices of 100 x 100 pixels each, can be
converted into 100 vectors each containing 10,000 elements.

The iml_student.py file performs these transformations.
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Figure 2: Visualization of the first 9 images of galaxies of the sample as well as the
associated morphological type (1 = "Elliptic”, 2 = ”Spirals”, 3 = ”Irregular”)



1.4 Evaluation

Before we begin to set up our ”classifier”, and to better understand the results, it is
essential to speak in a few words about performance evaluation.

Performance evaluation is used to compare two models to determine which is the best.
This can be to choose between two learning algorithms or to optimize, for the same
algorithm, the different values of hyper-parameters or finally to select different ways of
pre-processing the data ...

1.4.1 Cross validation

An easy method to set up, in general, is cross-validation which consists, in its simplest
version, in separating its sample into a training game and a test game. The training
game will be used to train the model and the test game to evaluate performance. This
test may, however, be dependent on the method of separation of the sample. It must be
ensured that the distribution of the properties of the sets is the same in the initial sample
and in the training and test games. But even in this case, the result may depend on the
proportion of the two games.

More advanced performance evaluation versions are often used to overcome these different
biases. For example, cross-validation ”k-fold” consists in separating the initial sample into
k datasets, choosing a test set and training on the (k - 1) other games and repeating the
operation k times by changing the set of test. Although more reliable, it is clear that this
method requires much more computing time. In the following, we will be satisfied with
the cross validation with a training game and a test game.

1.4.2 Precision/recall/specificity /f-score

The simplest way to calculate the performance of the algorithm in the case of a classifica-
tion is to use the test sample to predict the class with the trained model and to compare
the predictions with the reference classes.

By only looking at a binary case, four cases are possible for a value tested:

> the true positive case (VP), the tested value is identified as belonging to the class
and this value belongs to the class;

> the true negative case (VN), the test value is identified as not belonging to the class
and does not actually belong to the class;

> the false positive case (FP), the test value is identified as belonging to the class, but
it does not belong to the class;

> the false negative case (FN), the test value is identified as not belonging to the class
while it belongs to the class.

In the case of a single class, it is possible to estimate the number of true / false positives

/ negatives for all the values of the test sample and thus obtain the confusion matrix.
Applying the same principle to the case with N classes, there will be (N — 1) different
false cases (depending on the class chosen by mistake) and the confusion matrix will be
of size NzN.

From these numbers, we can derive several performance estimators:

> accuracy = VP / (VP + FP), that is, the rate of correct answers on all responses
measured as true

> the sensitivity = VP / (VP + FN), that is to say the rate of good positive answers
in relation to all the answers that are actually true

> the specificity = VN / (VN + FP), that is to say the rate of good negative answer
with respect to all the answers which are actually true

> the f-score = 2 x (precision x sensitivity) / (precision + sensitivity).

Since performance estimators are multiple, choosing the best model is not obvious and
depends on how the model is used.

1.4.3 ROC

There are of course other ways to estimate the performance that we will not use. To go
further, you can use the ROC curve, as in the example of scikit-learn
(http://scikit-learn.org/stable/auto_examples/model selection/plot_roc.html),
and comparisons to naive cases, also illustrated in the literature of scikit-learn

(http://scikit-learn.org/stable/auto_examples/calibration/plot_compare_calibration.html).

2 Work

2.1 Learning

2.1.1 SVM

We will start our study with the use of a support vector machine (SVM) because a
priori it is a simple algorithm of linear prediction, that is to say it calculates a linear
combination ( weighted sum) of the input variables to predict the output value. In the
case of classification, you can see this as an algorithm that tries to separate your points
by lines. It’s not completely that simple. There are hyper-parameters, that is to say,
parameters fixed a priori in the model. For example, the "margin” makes it possible,
in a way, to give a width to the separation lines. It is also possible, by changing the
repository, to make separations with more complex functions than a straight line in the
original repository. For that, use scikit-learn.



Question :

Start learning our SVM (this step takes a few minutes).
Show the confusion matrix.

Display accuracy, sensitivity and f-score.

The different values of precision and sensitivity make it possible to get an idea of the
results crossed compared to the different expected values. The values 1, 2, 3 represent
classes (Elliptic, Spiral, Irregular). Ideally, the levels of precisions, sensitivities and f-
scores of each class should be equal to 1. The support is simply the number of objects
considered in the different calculations.

There is a class in scikit-learn to optimize hyper-parameters: GridSearchCV. Be care-
ful, however, it typically takes 20 minutes with 8 jobs running in parallel (1 per processor)
on a laptop. Ounly launch if you have enough time or a powerful machine.

2.1.2 Random Forest

The principle of set methods is to statistically combine several models to predict a more
robust result. These methods break down into two categories: the so-called parallel
methods, which drive the models independently and the sequential methods, also called
”hoost”, which generate the models iteratively by weighting the data that are sources of
€ITOrS.

Question :
Test Random Forest

Random Forest is one of the most popular and most powerful machine learning algorithms.
It is a type of ensemble machine learning algorithm called Bootstrap Aggregation or
bagging. The bootstrap is a powerful statistical method for estimating a quantity from a
data sample. Such as a mean. You take lots of samples of your data, calculate the mean,
then average all of your mean values to give you a better estimation of the true mean
value. In bagging, the same approach is used, but instead for estimating entire statistical
models, most commonly decision trees. Multiple samples of your training data are taken
then models are constructed for each data sample. When you need to make a prediction
for new data, each model makes a prediction and the predictions are averaged to give a
better estimate of the true output value. Random forest is a tweak on this approach where
decision trees are created so that rather than selecting optimal split points, suboptimal
splits are made by introducing randomness. The models created for each sample of the
data are therefore more different than they otherwise would be, but still accurate in their
unique and different ways. Combining their predictions results in a better estimate of
the true underlying output value. If you get good results with an algorithm with high
variance (like decision trees), you can often get better results by bagging that algorithm.

2.1.3 Boost-tree

Question :
Test AdaBoostClassifier and then GradientBoostingClassifier

Boosting is an ensemble technique that attempts to create a strong classifier from a num-
ber of weak classifiers. This is done by building a model from the training data, then
creating a second model that attempts to correct the errors from the first model. Models
are added until the training set is predicted perfectly or a maximum number of models are
added. AdaBoost was the first really successful boosting algorithm developed for binary
classification. It is the best starting point for understanding boosting. Modern boosting
methods build on AdaBoost, most notably stochastic gradient boosting machines. Ad-
aBoost is used with short decision trees. After the first tree is created, the performance
of the tree on each training instance is used to weight how much attention the next tree
that is created should pay attention to each training instance. Training data that is hard
to predict is given more weight, whereas easy to predict instances are given less weight.
Models are created sequentially one after the other, each updating the weights on the
training instances that affect the learning performed by the next tree in the sequence.
After all the trees are built, predictions are made for new data, and the performance
of each tree is weighted by how accurate it was on the training data. Because so much
attention is put on correcting mistakes by the algorithm it is important that you have
clean data with outliers removed.

2.1.4 Neural Networks

An artificial neuron is a mathematical function that receives one or more inputs and
adds them together to produce an output. Usually, each entry is weighted separately and
the sum is filtered by a non-linear function called the activation function. A network of
(artificial) neurons is therefore a set of connected neurons. Each connection between the
neurons can transmit a signal to another neuron. The receiving neuron can process the
signals sent to it and transmit its output to the neurons connected to it downstream in
the network. The simplest neural network is the perceptron composed of an input layer
with an input neuron all connected to an output neuron. This network makes it possible
to represent models based on a linear combination of the variables. For more complex
models, we can add intermediate layers, called hidden layers. Each neuron in a layer is
connected to all the neurons in the layer above it. This is called the multilayer perceptron
(or multilayer perceptron in English, "MLP”). Stacking perceptrons into a multi-layer
neural network can model arbitrarily complex functions. This is what gives deep neural
networks the predictive power that is currently making them successful. But the more
parameters there are, the greater the amount of training data needed to define the values
of these parameters without risking over-learning. There are many other architectures of
neural networks.

Let’s train an MLP on our images of galaxies. Let’s start wisely with a hidden
layer of 100 neurons.




2.2 Prediction

Using the previous models, you are able to predict the type of a galaxy from its image.

And that’s good, we just received a new sample! You can find it in your subdirectory
/home/TP/modules/sujets/IML/tp_galaxies/new_image/

Question :

Use the predict() method on previous models.
Add a visualization.

Conclusions?




